Ионная связь существует в соединениях. Неорганическая химия. II. Проверка домашнего задания

7.1. Что такое химические связи

В предыдущих главах вы познакомились с составом и строением изолированных атомов различных элементов, изучили их энергетические характеристики. Но в окружающей нас природе изолированные атомы встречаются крайне редко. Атомы почти всех элементов " стремятся" соединиться, образуя молекулы или другие более сложные химические частицы. Принято говорить, что при этом между атомами возникают химические связи.

В образовании химических связей участвуют электроны. Каким образом это происходит, вы узнаете, изучив эту главу. Но прежде нам надо ответить на вопрос, почему атомы образуют химические связи. На этот вопрос мы можем ответить, даже не зная ничего о природе этих связей: " Потому что это энергетически выгодно!" А вот, отвечая на вопрос, откуда при образовании связей возникает выигрыш в энергии, мы постараемся понять, как и почему химические связи образуются.

Как и электронное строение атомов, подробно и строго научно химические связи изучает квантовая химия, а мы с вами можем только воспользоваться некоторыми важнейшими выводами, сделанными учеными. При этом для описания химических связей мы будем пользоваться одной из простейших моделей, предусматривающей существование трех типов химической связи (ионной, ковалентной и металлической).

Вспомните – грамотно пользоваться любой моделью можно, только зная границы применимости этой модели. Модель, которой мы будем пользоваться, тоже имеет свои границы применимости. Например, в рамках этой модели нельзя описать химические связи в молекулах кислорода, большинства бороводородов и некоторых других веществ. Для описания химических связей в этих веществах используют более сложные модели.

1. Если связываемые атомы сильно отличаются по размерам, то маленькие атомы (склонные принимать электроны) отнимут электроны у больших атомов (склонных отдавать электроны), и образуется ионная связь. Энергия ионного кристалла меньше, чем энергия изолированных атомов, поэтому ионная связь возникает даже тогда, когда атому не удается, отдавая электроны, полностью завершить свою электронную оболочку (незавершенным может остаться d - или f -подуровень). Рассмотрим примеры.

2. Если связываемые атомы маленькие(r o <1), то все они склонны принимать электроны, а отдавать их не склонны; поэтому отобрать друг у друга электроны такие атомы не могут. В этом случае связь между ними возникает за счет попарного обобществления неспаренных валентных электронов: один электрон одного атома и один электрон другого атома с разными спинами образуют пару электронов, принадлежащую обоим атомам и связывающую их. Так образуется ковалентная связь .
Образование ковалентной связи в пространстве можно представить себе как перекрывание электронных облаков неспаренных валентных электронов разных атомов. При этом пара электронов образует общее электронное облако, связывающее атомы. Чем больше электронная плотность в области перекрывания, тем больше выделяется энергии при образовании такой связи.
Прежде чем рассмотреть простейшие примеры образования ковалентной связи, договоримся валентные электроны атома обозначать точками вокруг символа этого атома, причем парой точек – неподеленные электронные пары и пары электронов ковалентной связи, а отдельными точками – неспаренные электроны. При таком обозначении валентная электронная конфигурация атома, например, фтора будет изображаться символом , а атома кислорода – . Построенные из таких символов формулы называются электронными формулами или формулами Льюиса (американский химик Гилберт Ньютон Льюис предложил их в 1916 году). По объему передаваемой информации электронные формулы относятся к группе структурных формул. Примеры образования атомами ковалентных связей:

3. Если связываемые атомы большие (r o > 1А), то все они более или менее склонны отдавать свои электроны, а склонность принимать чужие электроны у них незначительна. Поэтому образовать между собой ионную связь эти большие атомы тоже не могут. Ковалентная связь между ними также оказывается невыгодной, так как электронная плотность в больших по размеру внешних электронных облаках незначительна. В этом случае при образовании из таких атомов химического вещества происходит обобществление валентных электронов всех связываемых атомов (валентные электроны становятся общими для всех атомов), и образуется металлический кристалл (или жидкость), в котором атомы связаны металлической связью.

Как определить, связи какого типа образуют атомы элементов в определенном веществе?
По положению элементов в естественной системе химических элементов, например:
1. Хлорид цезия CsCl. Атом цезия (IА группа) большой, легко отдает электрон, а атом хлора (VIIА группа) маленький и легко его принимает, следовательно, связь в хлориде цезия ионная.
2. Диоксид углерода CO 2 . Атомы углерода (IVА группа) и кислорода (VIА группа) не сильно отличаются по размерам – оба маленькие. По склонности принимать электроны они отличаются незначительно, следовательно связь в молекуле CO 2 ковалентная.
3. Азот N 2 . Простое вещество. Связываемые атомы одинаковые и при этом маленькие, следовательно, связь в молекуле азота ковалентная.
4. Кальций Са. Простое вещество. Связываемые атомы одинаковые и довольно большие, следовательно связь в кристалле кальция металлическая.
5. Барий-тетраалюминий BaAl 4 . Атомы обоих элементов достаточно велики, особенно атомы бария, поэтому оба элемента склонны только отдавать электроны, следовательно, связь в этом соединении металлическая.

ИОННАЯ СВЯЗЬ, КОВАЛЕНТНАЯ СВЯЗЬ, МЕТАЛЛИЧЕСКАЯ СВЯЗЬ, УСЛОВИЯ ИХ ОБРАЗОВАНИЯ.
1.Что является причиной соединения атомов и образования между ними химических связей?
2.Почему благородные газы состоят не из молекул, а из атомов?
3.Определите тип химической связи в бинарных соединениях: а) KF, K 2 S, SF 4 ; б) MgO, Mg 2 Ba, OF 2 ; в) Cu 2 O, CaSe, SeO 2 . 4.Определите тип химической связи в простых веществах: а) Na, P, Fe; б) S 8 , F 2 , P 4 ; в) Mg, Pb, Ar.

7.З. Ионы. Ионная связь

В предыдущем параграфе вы познакомились с ионами, которые образуются, когда отдельные атомы принимают или отдают электроны. В этом случае число протонов в атомном ядре перестает быть равным числу электронов в электронной оболочке, и химическая частица приобретает электрический заряд.
Но в состав иона может входить и не одно ядро, как в молекуле. Такой ион представляет собой единую систему, состоящую из нескольких атомных ядер и электронной оболочки. В отличие от молекулы общее число протонов в ядрах не равно общему числу электронов в электронной оболочке, отсюда – электрический заряд иона.

Какие бывают ионы? То есть, чем они могут различаться?
По числу атомных ядер ионы делятся на простые (или одноатомные ), то есть содержащие одно ядро (например: K, O 2 ), и сложные (или многоатомные ), то есть содержащие несколько ядер (например: CO 3 2 , 3 ). Простые ионы – заряженные аналоги атомов, а сложные – заряженные аналоги молекул.
По знаку заряда ионы делятся на катионы и анионы .

Примеры катионов: K (ион калия), Fe 2 (ион железа), NH 4 (ион аммония), 2 (ион тетраамминмеди). Примеры анионов: Cl (хлорид-ион), N 3 (нитрид-ион), PO 4 3 (фосфат-ион), 4 (гексацианоферрат-ион).

По значению заряда ионы делятся на однозарядные (K , Cl , NH 4 , NO 3 и т. п.), двухзарядные (Са 2 , O 2 , SО 4 2 и т. д.) трехзарядные (Аl 3 , РО 4 3 и т. п.) и так далее.

Итак, ион РО 4 3 мы назовем трехзарядным сложным анионом, а ион Са 2 – двухзарядным простым катионом.

Кроме этого, ионы различаются еще и своими размерами. Размер простого иона определяется радиусом этого иона или ионным радиусом . Размер сложных ионов охарактеризовать труднее. Радиус иона, как и радиус атома, непосредственно измерить невозможно (как вы понимаете, четких границ у иона нет). Поэтому для характеристики изолированных ионов используют орбитальные ионные радиусы (примеры – в таблице 17).

Таблица 17.Орбитальные радиусы некоторых простых ионов

Орбитальный

радиус, А

Орбитальный

радиус, А

Li F 0,400
Na Cl 0,742
K Br 0,869
Rb I 1,065
Cs O 2 0,46
Be 2 S 2 0,83
Mg 2

Ионная связь

Чисто ионной связью называется химически связанное состояние атомов, при котором устойчивое электронное окружение достигается путем полного перехода общей электронной плотности к атому более электроотрицательного элемента.

На практике полный переход электрона от одного атома к другому атому - партнеру по связи не реализуется, поскольку каждый элемент имеет большую или меньшую электроотрицательность, и любая химическая связь будет в некоторой степени ковалентной. Если степень ковалентной связи достаточна высока, то такая химическая связь является полярной ковалентной связью с той или иной степенью ионности. Если же степень ковалентности связей мала, по сравнению со степенью ее ионности, то такая связь считается ионной.

Ионная связь возможна только между атомами электроположительных и электроотрицательных элементов, находящимися в состоянии разноименно заряженных ионов. Процесс образования ионной связи позволяет объяснить электростатическая модель, т.е. рассмотрение химического взаимодействия между отрицательно и положительно заряженными ионами.

Ионы - это электрически заряженные частицы, образующиеся из нейтральных атомов или молекул путем отдачи или приема электронов.

При отдаче или приеме электронов молекулами образуются молекулярные или многоатомные ионы, например, - атион диоксигена, - нитрит-ион.

Одноатомные положительные ионы, или одноатомные отрицательные ионы, или одноатомные анионы, возникают при химической реакции между нейтральными атомами путем взаимопередачи электронов при этом атом, электроположительного элемента, обладающий небольшим числом внешних электронов, переходит в более устойчивое состояние одноатомного катиона путем уменьшения числа этих электронов. Наоборот, атом электроотрицательного элемента, имеющий большое число внешних электронов, переходит в более устойчивое для него состояние одноатомного иона путем увеличения числа электронов. Одноатомные катионы образуются, как правило, металлами, а одноатомные анионы - неметаллами.

При передачи электронов атомы металлических и неметаллических элементов стремятся сформироваться вокруг своих ядер устойчивую конфигурацию электронной оболочки. Атом неметаллического элемента создает вокруг своего остова внешнюю оболочку последующего благородного газа. Тогда как атом металлического элемента после отдачи внешних электронов получает устойчивую октетную конфигурацию предыдущего благородного газа.

Ионные кристаллы

При взаимодействии металлических и неметаллических простых веществ, сопровождающемся отдачей и приемом электронов, образуются соли. Пример:

2Na + Cl2 = 2NaCl ,

2Al + 3F2 = 2AlF3

Ионная связь характерна не только для солей производного бескислородных и кислородосодержащих кислот [типа NaCl, AlF3, NaNO3, Al(SO4)3], но и для других классов неорганических веществ - основных оксидов и гидроксидов [типа Na2O и NaOH], бинарных соединений [типа Li3N и CaC2]. Между ионами с противоположными по знаку зарядами проявляются электростатические силы притяжения. Такие силы притяжения изотропны, т.е. действуют одинаково, во всех направлениях. В результате расположение ионов в твердых солях упорядочивается в пространстве определенным образом. Система упорядочено расположенных катионов и анионов называется ионной кристаллической решеткой, а сами твердые вещества (соли, основные оксиды и гидроксиды) - ионными кристаллами.

Все ионные кристаллы имеют солеобразный характер. Под солеобразным характером понимается определенный набор свойств, отличающий ионные кристаллы от кристаллических веществ с другими типами решеток. Конечно, не все ионные решетки характеризуются таким расположением ионов в пространстве, число ионов - соседей с противоположным зарядом может быть и иным, однако чередование катионов и анионов в пространстве является обязательным для кристаллов.

Вследствие того, что кулоновские силы притяжения распространяются одинаково по всем направлениям, ионы в узлах кристаллической решетки связаны относительно прочно, хотя каждый из ионов не зафиксирован неподвижно, а непрерывно совершает тепловые колебания вокруг своего положения в решетке. Поступательное же движение ионов вдоль решетки отсутствует, поэтому все вещества с ионными связями при комнатной температуре - твердые (кристаллические). Амплитуда тепловых колебаний может быть увеличена нагреванием ионного кристалла, которое приводит в итоге к разрушению решетки и переходу твердого вещества в жидкое состояние (при температуре плавления). Температура плавления ионных кристаллов относительно высока, а температура кипения, при которой совершается переход жидкого вещества в самое неупорядоченное, газовое состояние, имеет очень большие значения. Пример:

Многие соли, особенно многоэлементные комплексные, а так же соли органических кислот могут разлагаться при температуре более низких, чем температура кипения и даже температура плавления.

Типичным свойством многих соединений с ионной связью (которые не взаимодействуют с водой или не разлагаются до плавления) является их способность к диссоциации на составляющие ионы; вследствие подвижности ионов водные растворы или расплавы ионных кристаллов проводят электрический ток.

В ионных кристаллах отсутствуют связи между отдельными парами ионов; точнее следует сказать, что все содержащиеся в образце ионного соединения катионы и анионы оказываются связанными.

В ионных кристаллах, построенных из катионов и анионов, молекулы отсутствуют.

Химические формулы ионных веществ передают только соотношение катионов и анионов в кристаллической решетке; в целом образец ионного вещества электронейтрален. Например, в соответствии с формулой ионного кристалла Al2O3 соотношение катионов Al3+ и анионов О2- в решетке равно 2:3; вещество электронейтрально - шесть положительных зарядов (2 Al3+) нейтрализуется шестью отрицательными зарядами (3 О2-).

Хотя реальных молекул в ионных кристаллах не существует для единообразия с ковалентными веществами принято с помощью формул типа NaCl и Al2O3 передавать состав условных молекул, следовательно, характеризовать ионные вещества определенными значениями относительной молекулярной массы. Это тем более оправдано, поскольку переход от ковалентной связи к ионной происходит постепенно и имеют лишь условную границу с х = 1,7.

Относительная молекулярная масса веществ с ионной связью находится сложением относительных атомных масс соответствующих элементов с учетом числа атомов каждого элемента.

Пример: Относительная молекулярная масса Al2O3 составляет:

Строение и форма кристаллов являются предметом исследования кристаллографии, а связь свойств кристаллов и их строения изучает кристаллохимия.

Следует отметить, что соединений в которых существует только ионная связь практически нет. Всегда между соседними атомами в кристалле возникают и ковалентные связи.

Свойства вещества определяются его химическим составом, порядком соединения в молекулу атомов и их взаимным влиянием. Теория строения атомов объясняет механизм образования молекул и природу химической связи.

Важнейшими видами химической связи являются ионная, ковалентная, координационная, водородная и металлическая.

Ионная связь.

Для объяснения химической связи между атомами в молекулах солей, оксидов и щелочей наиболее пригодна теория, в основу которой положено представление об ионной связи.

Согласно теории ионной связи, самой устойчивой электронной конфигурацией атома является такая, при которой во внешнем электронном слое находится восемь или два электрона (подобно благородным газам). Довольно устойчивы также атомы, внешнего слой который содержит 18 электронов.

Во время химических реакций атомы стремятся приобрести наиболее устойчивую электронную конфигурацию. Это достигается в результате присоединения электронов атомов других элементов или отдачи электронов из внешнего слоя другим атомам. Атомы, отдавшие часть электронов, приобретают положительный заряд и становятся положительно заряженными ионами. Атомы, присоединившие электроны, превращаются в отрицательно заряженные ионы. Разноимённо заряженные ионы удерживаются друг около друга силами электростатического притяжения.

В качестве примера соединения с ионной связью рассмотрим хлорид натрия. Образование этого соединения схематически можно представить следующим образом. Атом натрия, имея электронную конфигурацию 1s 2 2s 2 2р 6 Зs 1 , легко отдает 3s-электрон, так как имеет низкую (493 кДж/моль) энергию ионизации. При этом атом натрия приобретает устойчивую электронную конфигурацию из восьми электронов 2s 2 2р 6 , характерную для благородных газов:

Nа = Nа + + е - .

Электронной конфигурации атома хлора 1s 2 2s 2 2р 6 Зs 2 Зр 5 до устойчивого состояния не хватает одного электрона. Вследствие большого сродства к электрону (365 кДж/моль) атом хлора легко присоединяет один электрон. Во внешнем слое при этом возникает устойчивая электронная конфигурация Зs 2 Зр 6:

Сl +е - = Сl - .

Разноимённо заряженные ионы натрия и хлора, возникающие в результате перехода электрона от атома натрия к атому хлора, взаимно притягиваются и образуют хлорид натрия - соединение ионного типа:

Nа + + С1 - = Nа + Cl - .

Молекулы, образованные из противоположно заряженных ионов называют ионными молекулами, а химическую связь в таких молекулах - ионной связью.

Рис. 1. Координация ионов в кристалле хлорида натрия.
Ионная связь не имеет определенной пространственной направленности, так как электрическое поле иона обладает сферической симметрией и одинаково убывает с расстоянием в любом направлении. Поэтому взаимодействие ионов не зависит от направления. Создаваемое ионами в окружающем пространстве электрическое поле тем сильнее, чем выше заряд иона и меньше его радиус.

Вследствие сферической симметрии электрического поля иона два разноименных иона, притянувшись друг к другу, сохраняют способность электростатически взаимодействовать с другими ионами. Именно поэтому данный ион может координировать вокруг себя еще некоторое число ионов противоположного знака. Указанные свойства ионной связи обусловливают способность ионных молекул соединяться друг с другом. В газообразном состоянии ионные соединения находятся в виде отдельных неассоциированных молекул, так как при высоких температурах кинетическая энергия молекул превышает энергию их взаимного притяжения. Ионные молекулы существуют в тех находящихся в газообразном состоянии веществах, которые при охлаждении образуют геометрически правильные структуры, составляющие основу кристалла. Так, кристалл хлорида натрия представляет собой сочетание огромного множества ионов Nа + и С1 - , определенным образом ориентированных друг относительно друга.

Из кристалла невозможно выделить определённую молекулу. Поэтому применение к подобным соединениям понятия молекула является условным и им пользуются, чтобы показать состав и количественное соотношение ионов в соединении. Из рис. 1 видно, что каждый ион Nа + окружен шестью ионами С1 - , а каждый ион Сl - , в свою очередь, - шестью ионами Na + . Число атомов или ионов, окружающих атом или ион в кристалле, называют координационным числом. В кристалле хлорида натрия координационное число для ионов натрия и хлора равно шести.

В основе представлений об ионной связи лежит понятие об электростатическом взаимодействии разноимённо заряженных ионов.

Способность атома терять электроны, превращаясь в положительно заряженные ионы, определяется энергией ионизация элемента (табл. 6). Из табл. 6 видно, что отрыв электрона от атома облегчается в главных подгруппах сверху вниз. При переходе к уровню с меньшим значением главного квантового числа энергия ионизации резко возрастает. Так, энергия отрыва второго электрона от атома лития в 14 раз больше энергии отрыва первого электрона. Этим и объясняется участие в образовании соединений лишь одного электрона атома лития или другого щелочного металла и не более двух электронов атома бериллия.

Т а б л и ц а 6. Энергия ионизации атомов элементов главных подгрупп I и II групп периодической системы, кДж/моль.


Элемент



Элемент

Энергия, необходимая для отрыва электрона

первого

второго

первого

второго

Li

518

7285

Be

899

1756



493

4556

Mg

735

1446

K

418

3063

Ca

586

1145

Rb

401

2650

Sr

547

1061

Cs

376

2290

Ba

501

836

Отрицательно заряженные ионы образуются в результате присоединения электрона к атому неметалла. Мерой способности к такому присоединению является сродство к электрону, которое характеризуется количеством энергии, выделяющейся при образовании отрицательно заряженного иона. Ниже приведены величины сродства к электрону у галогенов:

В ряду галогенов от фтора к иоду сродство к электрону снижается, однако у хлора оно несколько выше, чем у фтора. Это объясняется появлением у элементов III периода вакантных орбиталей, которых нет у фтора, относящегося ко II периоду.



Рис. 2. Схема деформа­ции электронных обо­лочек в электрическом поле.
Вещества с ионной связью в молекуле характеризуются высокими температурами плавления и кипения, в расплавленном состоянии и в растворах они диссоциируют на ионы, вследствие чего проводят электрический ток.

Помимо величины заряда и радиуса важной характеристикой иона являются его поляризационные свойства. Рассмотрим этот вопрос несколько подробнее. У неполярных частиц (атомов, ионов, молекул) центры тяжести положительных и отрицательных зарядов совпадают. В электрическом поле происходит смещение электронных оболочек в направлении положительно заряженной пластины, а ядер  в направлении отрицательно заряженной пластины (рис. 2). Вследствие деформации частицы в ней возникает диполь, она становится полярной.

Источником электрического поля в соединениях с ионным типом связи являются сами ионы. Поэтому, говоря о поляризационных свойствах иона, необходимо различать поляризующее действие данного иона и способность его самого поляризоваться в электрическом поле.

Поляризующее действие иона будет тем бóльшим, чем больше его силовое поле, т. е. чем больше заряд и меньше радиус иона. Поэтому в пределах подгрупп в периодической системе элементов поляризующее действие ионов понижается сверху вниз, так как в подгруппах при постоянной величине заряда иона сверху вниз увеличивается его радиус. Поэтому поляризующее действие ионов щелочных металлов, например, растет от цезия к литию, а в ряду галогенид-ионов  от I к F. В периодах поляризующее действие ионов растет слева направо вместе с увеличением заряда иона и уменьшением его радиуса.

Поляризуемость иона, способность его к деформации растут с уменьшением силового поля, т. е. с уменьшением величины заряда и увеличением радиуса. Поляризуемость анионов обычно выше, чем катионов, и в ряду галогенидов растет от F к I.

На поляризационные свойства катионов оказывает влияние характер их внешней электронной оболочки. Поляризационные свойства катионов как в активном, так и в пассивном смысле при одинаковом заряде и близком радиусе растут при переходе от катионов с заполненной оболочкой к катионам с незаконченной внешней оболочкой и далее к катионам с восемнадцатиэлектронной оболочкой. Например, в ряду катионов Mg­­­ 2+ , Ni 2+ , Zn 2+ поляризационные свойства усиливаются. Эта закономерность согласуется с изменением в приведённом в ряду радиуса иона и строения его электронной оболочки:

Для анионов поляризационные свойства ухудшаются в такой последовательности:

I - , Br - , Cl - , CN - , OH - , NO 3 - , F - , ClO 4 -

Результатом поляризационного взаимодействия ионов является деформация их электронных оболочек и, как следствие этого, сокращение межионных расстояний и неполное разделение отрицательного и положительного зарядов между ионами. Например, в кристалле хлорида натрия величина заряда на ионе натрия составляет +0,9, а на ионе хлора –0,9 вместо ожидаемой единицы. В молекуле KCl, находящейся в парообразном состоянии, величина зарядов на ионах калия и хлора составляет 0,83 единицы заряда, а в молекуле хлороводорода  лишь 0,17 единицы заряда.

Поляризация ионов оказывает заметное влияние на свойствах соединений о ионной связью, понижая их температуры плавления и кипения, уменьшая электролитическую диссоциацию в растворах и расплавах и др.

Ионные соединения образуются при взаимодействии элементов, значительно различающихся по химическим свойствам. Чем больше удалены друг от друга элементы в периодической системе, тем в большей степени проявляется в их соединениях ионная связь. Напротив, в молекулах, образованных одинаковыми атомами или атомами элементов, близких по химическим свойствам, возникают другие типы связи. Поэтому теория ионной связи имеет ограниченное применение.

Ковалентная связь.

В основе теории ковалентной связи, как и теории ионной связи, лежит представление об особой устойчивости атома, имеющего на внешнем электронном слое оболочку из восьми электронов. Отличие ковалентной связи от ионной состоит в том, что при её возникновении атомы приобретают устойчивую конфигурацию не путем отдачи или присоединения электронов, а посредством образования одной или нескольких общих электронных пар. В создании электронной пары принимают участие оба атома, отдавая на её образование по одному электрону. Эти электроны принадлежат наружным электронным слоям обоих атомов, дополняя число их электронов до восьми.

Если электроны в наружном электронном слое атома обозначить точками вокруг символа элемента, то образование ковалентной связи в молекулах фтора и азота можно представить следующей схемой:

У атома фтора на внешнем слое находится семь электронов. Каждый из атомов фтора отдает по одному электрону на образование общей электронной пары, вследствие чего оба атома в молекуле фтора приобретают электронную конфигурацию ближайшего благородного газа - неона. Атомы азота, имеющие на внешнем слое по пять электронов, образуют три общие электронные пары. И в этом случае атомы в молекуле N 2 приобретают устойчивую восьмиэлектронную оболочку.

Примерами более сложных соединений с ковалентной связью между атомами могут служить вода и аммиак:

В молекуле воды каждый из атомов водорода связан с атомом кислорода парой общих электронов. При этом у кислорода возникает во внешнем слое восьмиэлектронная конфигурация, а у обоих атомов водорода появляется устойчивый двухэлектронный слой. Подобное электронное строение имеют атомы водорода в аммиаке, а связанный с ними атом азота содержит во внешнем слое восемь электронов. В молекулах фтора, азота и некоторых других молекулах, образованных одноименными или близкими по химическим свойствам атомами, возникает неполярная ковалентная связь, так как общая электронная пара расположена симметрично по отношению к ядрам обоих атомов и притягивается к ним с одинаковой силой.

В молекулах более сложных соединений, образованных элементами с различными химическими свойствами (NH 3 , H 2 S, H 2 O, HCl, HBr и др.), общая электронная пара смещена в большей или меньшей мере к одному из атомов.

Образование общей электронной пары.

Согласно современной теории химической связи, основанной на квантовомеханических представлениях, одним из возможных путей химического взаимодействия двух атомов является образование общей электронной пары за счет имеющих антипараллельные спины неспаренных электронов этих атомов. Атомы с неспаренными электронами, имеющими параллельные спины, отталкиваются, и химическая связь между ними не возникает. Устойчивая молекула образуется лишь в том случае, если её потенциальная энергия меньше суммарной потенциальной энергии образующих её атомов. Чем больше различаются эти энергии, тем прочнее молекула.


Рис. 3. Энергия системы, состоящей из двух атомов водорода с антипарал­лельными (а) и параллельными (б) спинами.

При сближении двух атомов, имеющих во внешних электронных оболочках неспаренные электроны с антипараллельными спинами, между ними начинает действовать взаимное притяжение. В результате эти атомы сближаются еще больше, происходит замыкание полей и образование электронных пар. Однако расчет показал, что само по себе замыкание магнитных полей электронов со спинами противоположных направлений дает лишь очень небольшую часть той общей энергии, которая выделяется при образовании прочной валентной связи между атомами. Наличие неспаренных электронов следует рассматривать лишь как необходимое условие образования химической связи, являющейся результатом глубокого взаимодействия электронной пары с ядрами обоих атомов. где основное значение имеют электрические силы.

Квантовомеханический расчет показывает, что пребывание электронной пары в ионе двух ядер энергетически выгоднее, чем нахождение каждого неспаренного электрона в поле своего ядра. Энергия взаимодействия электронной пары с ядрами обоих атомов зависит от расстояния между реагирующими атомами. Так, на больших расстояниях эта энергия практически равна нулю. По мере сближения атомов увеличивается их взаимное притяжение, обусловленное электростатическим притяжением электронной пары обоими ядрами. Дальнейшее сближение атомов приводит к резкому преобладанию сил отталкивания. Поэтому химическая связь между двумя атомами характеризуется строго определенным расстоянием между ядрами, при котором притяжение между атомами максимально. Это расстояние называется длиной связи.

Квантовомеханические расчеты молекулы водорода показали, что при сближении двух атомов водорода с антипараллельными спинами энергия системы в целом уменьшается, проходит через минимум и при дальнейшем сближении атомов резко возрастает вследствие взаимного отталкивания положительно заряженных ядер (рис. 3, а). Минимальное значение энергии системы оказывается значительно ниже суммы энергий двух атомов водорода. Это означает. что при определенном сближении двух атомов водорода с антипараллельными спинами возможно образование прочной молекулы водорода H 2 . Напротив, сближение двух атомов водорода с параллельными спинами сопровождается непрерывным возрастанием энергии системы (кривая б на рис. 3). Следовательно, образование молекулы водорода в этом случае невозможно.

Образование химической связи между двумя атомами рассматривается как результат перекрывания их электронных облаков при сближении взаимодействующих атомов. Вследствие такого перекрывания облаков плотность отрицательного электрического заряда в пространстве между двумя ядрами атомов возрастает. Положительно заряженные ядра притягиваются к области перекрывания электронных облаков, в результате чего и образуется молекула. Эти представления о механизме взаимодействия двух атомов легли в основу теории химической связи, именуемой методом валентных связей.

Из сказанного следует, что валентность элемента определяется числом неспаренных электронов, принимающих участие в образовании химической связи. Валентные электроны элементов главных подгрупп расположены на s- и p-орбиталях внешнего электронного слоя; у элементов побочных подгрупп, за исключением лантаноидов и актиноидов, валентные электроны расположены на d-орбитали последнего (внешнего) слоя и s-орбитали предпоследнего электронного слоя.

Для правильной оценки валентности того или иного элемента необходимо иметь чёткое представление о распределении электронов по энергетическим уровням и подуровням и количестве неспаренных электронов. Руководствуясь принципом Паули и правилом Гунда, для атома каждого элемента в стационарном (невозбуждённом) состоянии можно определить число неспаренных электронов. Например, в основном состоянии внешний электронный слой атома углерода имеет структуру


2p

C
Из схемы видно, что в невозбуждённом состоянии атом углерода имеет два неспаренных электрона. Следовательно, с их участием может образоваться две электронные пары, осуществляющие две ковалентные связи. Однако хорошо известно, что для углерода значительно более характерны соединения, в которых он четырёхвалентен. Это можно объяснить тем, что в возбужденном (получившем дополнительную энергию) атоме происходит “разъединение” 2s-электронов и переход одного из них на 2p-орбиталь:
2p

C*
Такой атом углерода имеет четыре неспаренных электрона и может принимать участие в образовании четырех ковалентных связей.

Разъединение спаренных электронов требует затрат энергии, так как спаривание электронов сопровождается понижением потенциальной энергии атома. Однако расход энергии на перевод атома в возбуждённое состояние компенсируется энергией, выделяющейся в результате образования общих электронных пар, связывающих атомы между собой. Затраты энергии на возбуждение атома углерода с избытком компенсируются энергией, выделяющейся при образовании двух дополнительных ковалентных связей. Так, для перевода атома углерода из стационарного состояния 2s 2 2p 2 в возбужденное 2s 1 2p 3 требуется затратить около 400 кДж/моль. Энергия, которая выделяется, например, при образовании С–Н-связи в углеводородах метанового ряда, составляет около 360 кДж. Следовательно, при образовании двух связей С–Н выделится 720 кДж, что превышает энергию возбуждения атома углерода на 320 кДж.

Если же затраты энергии на образование дополнительного числа неспаренных электронов превышают энергию, выделяющуюся при образовании химической связи, то такие системы энергетически невыгодны и фактически не реализуются. Например, атомы азота, кислорода и фтора в стационарном состоянии имеют соответственно три, два и один неспаренный электрон в L-слое и не имеют в этом слое свободных электронных орбиталей:
2p 2p 2p

N O F
Увеличение числа неспаренных электронов у атомов этих элементов возможно лишь в результате перехода одного из электронов в следующий, M-слой. Затраты энергии, требующиеся для такого перехода, очень велики. Они не компенсируются энергией, выделяющейся при образовании ковалентных связей. Поэтому у атомов названных элементов увеличение числа неспаренных электронов не наблюдается, и за счёт имеющихся в атоме неспаренных электронов атом азота образует три ковалентные связи, атом кислорода  две, а атом фтора  лишь одну связь. Азот, имеющий три неспаренных 2p-электрона, в соединениях с водородом или металлами трехвалентен; кислород, имеющий два неспаренных электрона, двухвалентен, а фтор при взаимодействии с водородом или металлами ведет себя как одновалентный элемент.

Образование молекул азота и фтора можно представить следующей схемой:

2p N 2p F

8 электронов 8 электронов


8 электронов 8 электронов

N 2 F 2
В атомах элементов III периода электроны расположены в трёх слоях, причём внешний слой, характеризующийся главным квантовым числом три, содержит электроны лишь на орбиталях 3s и 3p, в то время как M-орбиталь остаётся вакантной. Например, в атомах серы и хлора в невозбуждённом состоянии электроны располагаются следующим образом:
S 3d Cl 3d


3s 3s

При возбуждении атома серы увеличение числа неспаренных электронов может происходить за счёт перехода на вакантную M-орбиталь только 3p-электронов или 3p- и 3s-электронов:
S* 3d S** 3d

Из приведённых схем видно, что в основном состоянии атом серы имеет два неспаренных электрона  это отвечает двухвалентному состоянию серы, которое проявляется в соединениях серы с водородом и металлами. В возбуждённом состоянии атом серы может иметь четыре или шесть неспаренных электронов. В таких случаях сера выступает как четырёхвалентный элемент, образуя, например, диоксид серы SO 2 , или как шестивалентный элемент в молекуле триоксида серы SO 3 .

Переход атома хлора в возбуждённое состояние сопровождается разъединением спаренных электронов 3s- и 3p-орбиталей и перемещением их на близкую по энергии свободную M-орбиталь. В результате этого количество неспаренных электронов в атоме хлора увеличивается от одного в невозбуждённом атоме до трех, пяти или семи в возбуждённом:


Cl* 3d Cl** 3d

Поэтому атом хлора, в отличие от атома фтора, может принимать участие в образовании не только одной, но также трёх, пяти или семи ковалентных связей. Так, в молекуле хлорноватистой кислоты HClO атом хлора образует одну ковалентную связь, в хлористой кислоте HClO 2  три, в хлорноватой кислоте HClO 3  пять, а в молекуле хлорной кислоты HClO 4  семь ковалентных связей.

Прочность ковалентной связи зависит от степени перекрывания электронных облаков неспаренных электронов двух атомов. Перекрывание электронных облаков может происходить в большей или меньшей мере в зависимости от типа орбиталей, участвующих в образовании химической связи.

Если перекрывание двух s-орбиталей принять за единицу, то перекрывание s- и p-орбиталей составит уже 1,7, а двух p-орбиталей  3. На рис. 4 схематически показано перекрывание орбиталей различного типа.

Область перекрывания электронных облаков находится в поле обоих ядер и характеризуется наиболее высокой электронной плотностью. Чем

Рис. 4. Схематическое изображение перекрывания s- (а), p- (б), s- и p- (в) и d-орбиталей (г).
больше перекрываются облака электронов, образующих общую пару, тем прочнее связаны между собой атомы, тем выше энергия связи.

Направленность ковалентной связи.

Выше указывалось, что электронные орбитали (кроме s-орбиталей) имеют пространственную направленность. Поэтому ковалентная связь, являющаяся результатом перекрывания электронных облаков взаимодействующих атомов, располагается в определенном направлении по отношению к этим атомам. Если перекрывание электронных облаков происходит в направлении прямой, соединяющей ядра взаимодействующих атомов (т. е., по оси связи), то образуется -связь (сигма-связь) (рис. 5).


Рис. 5. Схематическое изображение сигма-связи в молекулах водорода, хлороводорода и хлора.
При взаимодействии p-электронных облаков, направленных перпендикулярно к оси связи, образуются две области перекрывания расположенные по обе стороны от этой оси. Такая ковалентная связь называется -связью (пи-связь). -Связь может возникнуть не только за счёт p-электронов, но также за счет перекрывания d- и p-электронных облаков (б) или d-облаков (в) (рис. 6).


Рис. 6. Схематическое изображение -связи.
Пользуясь представлением о направленности ковалентных связей, можно объяснить пространственное расположение атомов в некоторых молекулах. Например, в молекуле воды связь между атомами осуществляется двумя ковалентными связями, образующимися в результате перекрывания 1s-электронных облаков двух атомов водорода с электронными облаками двух неспаренных 2p-электронов атома кислорода (рис. 7). p-Электронные облака атома кислорода взаимно перпендикулярны, поэтому следует ожидать, что и молекула воды будет иметь угловое строение. Этот вывод подтверждается структурными исследованиями. Следует, однако, отметить, что угол между ковалентными связями составляет 104,5°, а не 90°, как можно было ожидать. Различие рассчитанных и экспериментально полученных величин валентных углов наблюдается и во многих других соединениях. Объяснением этого может служить гибридизация атомных орбиталей.

Рис. 7. Строение молекулы воды.


При образовании молекулы электронные облака изменяют свою форму. Например, вместо неравноценных s- и p-электронных облаков могут образовываться равноценные гибридные (смешанные) электронные облака. В результате гибридизации электронные облака приобретают более вытянутую форму. Это обеспечивает большее их перекрывание и, следовательно, увеличивает энергию ковалентной связи. Выигрыш энергии превышает затраты её на осуществление гибридизации электронных орбиталей. На рис. 8 показана форма гибридного sp-облака. Из s- и p-орбитали образуются две гибридные sp-орбитали, вытянутые в противоположных направлениях. В зависимости от числа и типа орбиталей, участвующих в гибридизации, взаимное расположение гибридных орбиталей в пространстве будет различным. Если в гибридизации принимают участие одна s- и две p-орбитали (sp 2 -гибридизация), то образуются три равноценные гибридные орбитали, располагающиеся в одной плоскости и ориентированные друг относительно друга под углом 120 ° (рис. 9).

Рис. 8. Расположение электронных облаков при sp-гибридизации: а  (s + p)-облака, б  два sp-облака.

Рис. 9. Расположение электронных облаков при sp 2 -гибридизации: а  (s + p + p)-облака, б  три sp 2 -облака.

При гибридизации типа sp 3 , в которой принимает участие одна s- и три p-орбитали, образующиеся равноценные четыре орбитали вытянуты в направлениях к вершинам тетраэдра.

У атомов элементов III и последующих периодов, имеющих d-орбитали, в гибридизации часто принимают участие две d-, одна s- и три p-орбитали (sp 3 d 2 -гибридизация). В этом случае образуется шесть равноценных гибридных орбиталей, направленных к вершинам октаэдра.

-Связи осуществляются за счёт перекрывания как гибридизованных, так и негибридизованных орбиталей, -связи  исключительно за счёт перекрывания негибридизованных орбиталей. Направленность -связей обусловливает структуру молекулы. Одинарная связь между атомами  всегда -связь. В молекулах, содержащих кратные связи, одна -связь, а остальные -связи. Например, в молекуле азота, имеющей тройную связь (:NN:), содержится одна - и две -связи.

Геометрическая форма молекул соединений зависит от типа гибридных орбиталей, участвующих в образовании ковалентных связей. Гибридным sp-орбиталям отвечает линейная структура молекул, sp 2 -гибридизация приводит к образованию плоских треугольных молекул, при sp 3 -гибридизации образуются молекулы тетраэдрической формы, результат гибридизации типа sp 3 d 2  молекулы октаэдрической конфигурации.


Рис. 10. Расположение электронных облаков при sp 3 -гибридизации: а  (s + p + p + p)-облака, б  четыре sp 3 -облака.

Например, в молекуле метана атом углерода образует четыре -связи с атомами водорода, при этом осуществляется, sp 3 -гибридизация орбиталей, и молекула имеет форму тетраэдра. В молекуле этилена каждый атом углерода соединен -связями с атомами водорода. Соединение двух атомов углерода между собой осуществляется одной - и одной -связью. Поскольку одна p-орбиталь атома углерода участвует в образовании -связи, гибридизация sp 2 осуществляется за счет одного s- и двух p-электронов, и молекула этилена имеет треугольную форму. В молекуле ацетилена H–CC–H имеются две -связи, образованные двумя p-орбиталями атома углерода. Следовательно, в этом случае в гибридизации может принять участие лишь одна, оставшаяся свободной, p-орбиталь. Именно поэтому в молекуле ацетилена происходит sp-гибридизация, и молекула ацетилена линейна. В молекуле диоксида углерода O=C=O атом углерода образует две -связи с атомами кислорода. В образовании -связей принимают участие две гибридные sp-орбитали, поэтому молекула CO 2 линейна.

Полярные молекулы.

При рассмотрении химической связи с точки зрения взаимодействия двух ядер и образования общей для них электронной пары нельзя провести резкую границу между ионной и ковалентной связями. Если молекула образована одинаковыми атомами, общая электронная пара принадлежит обоим атомам в равной мере и оба атома электрически нейтральны. Однако в тех случаях, когда молекула состоит из различных атомов, связующая электронная пара обычно смещена в сторону одного из них, а именно в сторону того атома, который обладает бóльшим сродством к электрону. Например, в соединениях галогенов с водородом общая электронная пара смещена в направлении атома галогена, в результате чего та часть молекулы, в которой находится галоген, приобретает некоторый частичный отрицательный заряд, а противоположная, где находится водород, заряжается частичным положительным зарядом. Однако наличие частичных зарядов в отдельных частях молекулы еще не означает образования ионов. Ковалентная связь, при образовании которой электронная пара смещается в сторону одного из атомов, называется полярной связью.

В соединениях элементов одного периода общая электронная пара смещается в сторону атома того элемента, который в таблице стоит правее. В соединениях элементов одной подгруппы электронная пара смещается в направлении атома элемента с меньшей атомной массой.

Полярные молекулы можно рассматривать как электрические диполи, в которых разные по знаку, но одинаковые по величине заряды расположены на определенном расстоянии друг от друга. Мерой полярности молекул служит дилольный момент, представляющий собой произведение величины заряда на расстояние между центрами положительного и отрицательного зарядов в молекуле. Наличие или отсутствие дипольного момента у молекулы часто позволяет судить о её геометрическом строении. Например, для молекулы типа AB 2 возможно линейное или угловое строение:




Линейная структура характеризуется симметричным распределением зарядов и отвечает неполярной молекуле. Напротив, в молекуле, имеющей угловое строение, заряды распределяются асимметрично. Такая молекула полярна. Из того факта, что молекула CO 2 неполярна, а мслекула SO 2 обладает дипольным моментом, можно сделать вывод о линейном строении молекулы диоксида углерода и угловом строении молекулы диоксида серы.

Зависимость между полярностью молекулы и полярностью связей между атомами в этой молекуле не однозначна. Так, отсутствие в молекуле полярных свявей обусловливает и неполярность самой молекулы. Напротив, наличие в молекуле полярных связей еще не означает полярности молекулы. Например, линейная молекула диоксида углерода O=C=O и треугольная молекула трифторида бора BF 3 неполярны, хотя имеют полярные связи. Неполярность этих молекул объясняется совпадением центров тяжести положительных и отрицательных зарядов в них вследствие симметричности расположения связей в молекулах. В большинстве случаев неполярными являются также молекулы, содержащие гибридизованные связи тила sp, sp 2 , sp 3 , sp 3 d 2 . Молекулы, связи в которых образованы двумя или тремя чистыми p-орбиталями (например, H 2 S, AsCl 3), полярны.

Полярность молекул в значительной мере определяет свойства веществ. Полярные молекулы поворачиваются друг к другу разноимённо заряженными полюсами, и между ними возникает взаимное притяжение. Поэтому вещества, образованные полярными молекулами, имеют более высокие температуры плавления и кипения, чем вещества, молекулы которых неполярны.

Жидкости, молекулы которых полярны, имеют более высокую растворяющую способность. При этом чем больше полярность молекул растворителя, тем выше растворимость в ней полярных или ионных соединений. Эта зависимость объясняется тем, что полярные молекулы растворителя за счет диполь-дипольного или ион-дипольного взаимодействия с растворяемым веществом способствуют распаду растворяемого вещества на ионы. Например, раствор хлороводорода в воде, молекулы которой полярны, хорошо проводит электрический ток. Раствор хлороводорода в бензоле не обладает заметной электропроводностью. Это указывает на отсутствие ионизации хлороводорода в бензольном растворе, так как молекулы бензола неполярны.

Количественную характеристику полярности связи можно получить, сопоставляя значения электроотрицательности элементов. Эта величина представляет собой арифметическую сумму энергии ионизации и сродства к электрону. За единицу принята электроотрицательность лития. Электроотрицательность других элементов выражается в относительных величинах и равна 0,9 для натрия, 0,8 для калия, 2,1 для водорода, 3 для азота, 3,5 для кислорода, 3 для хлора, 4 для фтора, 2,5 для углерода и т. д.

Так, полярность связи в молекуле хлороводорода (в %) можно определить по формуле:

,

где э Cl  электроотрицательность хлора; э H  электроотрицательность водорода. Подставляя соответствующие значения, находим:

.

Если полярность ионной связи принять за 100 %, а ковалентной  за 0, то найденные 18 % означают, что в молекуле хлороводорода связь на 18 % имеет ионный и на 82  ковалентный характер.

Представление о смещении общей электронной пары в направлении элемента с большей величиной электроотрицательности можно получить из рис. 11.


Рис. 11. Положение общей электронной пары в молекулах фтора, фтороводорода и фторида натрия.
В тех случаях, когда атомы в молекуле связаны между собой кратными связями, оценить полярность связи на основании электроотрицательности не всегда удается. Например, разность электроотрицательностей хлора и водорода составляет 0,9 (3 – 2,1). Эта величина близка к разности электроотрицательностей атомов кислорода и углерода (3,5 – 2,5 = 1). На этом основании можно было бы предположить, что полярности молекул HCl и CO будут близки; в действительности же дипольный момент хлороводорода превышает дипольный момент монооксида углерода в десять раз. Кроме того, отрицательный конец диполя в молекуле CO направлен в сторону менее отрицательного атома углерода. Как это объяснить?

При образовании молекулы CO неспаренные электроны атомов углерода и кислорода образуют две связи:



Общие электронные пары смещаются в сторону более электроотрицательного атома кислорода. Одновременно с этим за счёт свободной орбитали атома углерода и неподелённой электронной пары атома кислорода образуется третья связь. Это приводит к смещению электронной плотности от атома кислорода к атому углерода настолько, что избыточная электронная плотность оказывается на атоме углерода, а не на атоме кислорода как более электроотрицательном элементе. Таким образом, переход неподелённой электронной пары от атома кислорода к атому углерода приводит к понижению полярности молекулы монооксида углерода. Примером полярных молекул могут служить молекулы H 2 O, NH 3 , HCl.

В многоатомных молекулах сложных веществ часть атомов может быть связана ионной связью, часть  ковалентной, причем ковалентные связи могут быть как полярными, так и неполярными. В таких случаях полярность молекулы в целом зависит как от степени полярности отдельных связей, так и от их расположения в молекуле, т. е. от строения многоатомной молекулы.

Вещества, молекулы которых полярны, проводят электрический ток в растворённом и расплавленном виде, в большинстве случаев хорошо растворяются в полярных растворителях, например в воде. Вещества, молекулы которых неполярны, лучше растворяются в неполярных растворителях, например в бензоле, четырёххлористом углероде и т. п.

Ионные соединения, образованные из атомов, сильно различающихся по химическим свойствам элементов, можно рассматривать как предельный случай полярной ковалентной связи, когда общая электронная пара целиком переходит к одному из атомов соединения.

Координационная, водородная и металлическая связи.

Координационная связь. Выше показано, что полярная и неполярная ковалентные связи образуются общей парой электронов, представленной двумя атомами, между которыми возникает химическая связь. Например, атом азота, имеющий в стационарном состоянии электронную структуру внешнего слоя 2s 2 2p 3 , за счёт трёх неспаренных p-электронов образует три ковалентные связи с атомами водорода, превращаясь в аммиак. Два спаренных s-электрона атома азота в этой реакции участия не принимают, эта электронная пара остается неподелённой. Если точками обозначить электроны, первоначально принадлежавшие атому азота, а крестиками  принадлежавшие атомам водорода, то электронную структуру молекулы аммиака можно представить следующей схемой:

Из восьми электронов внешнего электронного слоя атома азота шесть принимают участие в образовании трёх ковалентных связей и являются общими для атома азота и атомов водорода, а два принадлежат только атому азота. Эта электронная пара может принимать участие в образовании ковалентной связи с другим атомом, имеющим свободную электронную орбиталь.

Например, у атома водорода на 1s-орбитали находится один электрон, а у иона водорода эта орбиталь свободна. Поэтому между молекулой аммиака и ионом водорода возникает ковалентная связь, в которой неподеленная электронная пара атома азота становится общей для двух атомов. Образование иона аммония можно представить схемой:


Другой пример. Атом бора с конфигурацией внешнего электронного слоя 2s 2 2p 1 в трифториде бора приобретает электронную структуру 2s 2 2p 4 . Следовательно, атом бора в этом соединении имеет одну вакантную p-орбиталь и может принять на неё электронную пару. Действительно, трифторид бора способен соединяться с молекулой аммиака:

Из приведенных схем видно, что в образовании химической связи участвует неподелённая пара электронов, ранее принадлежавшая только атому азота. При образовании химической связи эта пара электронов становится общей для обоих атомов, дополняя до восьми количество электронов во внешнем электронном слое. Атом (или ион), представляющий свою неподелённую пару при образовании химической связи, называется донором. Атом (или ион), принимающий на свободную орбиталь эту неподеленную электронную пару, называется акцептором. Ковалентную связь, возникающую между двумя атомами за счет неподелённой электронной пары одного из них, называют донорно-акцепторной или координационной связью. В рассмотренных примерах донором электронной пары служит атом азота, а акцепторами  ион водорода и атом бора.

Экспериментально доказано, что в ионе NH 4 + все четыре связи азота с водородом равноценны, хотя три из них возникли по механизму образования ковалентной связи, а одна  донорно-акцепторная. Следовательно, ковалентная и координационная связи тождественны по свуей природе и различаются лишь способом образования.

Координационная связь осуществляется при образовании координационных соединений. В таких соединениях может проявляться одновременно несколько типов химической связи. Так, в координационном соединении SO 4 между комплексным катионом 2+ и ионом сульфата SO 4 2- осуществляется ионная связь. Между ионом меди Cu 2+ и четырьмя молекулами аммиака NH 3 существует донорно-акцепторная связь. Наконец, между атомами азота и водорода в аммиаке, а также между атомами серы и кислорода в ионе сульфата возникает полярная ковалентная связь.

Водородная связь. Название этого типа химической связи показывает, что в её образовании принимает участие атом водорода. Этот тип связи очень распространён и играет значительную роль во многих химических процессах.

Возникновение водородной связи можно объяснить действием электростатических сил. В молекуле воды между атомами водорода и кислорода существует полярная ковалентная связь. При её образовании электронное облако, принадлежащее атому водорода, сильно смещается к атому кислорода, который характеризуется высокой электроотрицательностью. В результате этого атом кислорода приобретает отрицательный заряд, а ядро водорода (протон) почти полностью лишается электронного облака. Между протоном и отрицательно заряженным атомом кислорода соседней молекулы воды возникает электростатическое притяжение. Протон, обладающий ничтожно малыми размерами, способен проникать в электронные оболочки других атомов, что и приводит к образованию водородной связи. В результате проявления водородной связи происходит ассоциация молекул воды и связывание их в димеры, тримеры, тетрамеры и т. д.

Водородная связь образуется и во фтороводороде: HF---HF, где донором электронов является атом фтора. Процесс образования водородной связи при взаимодействии двух молекул HF можно представить следующей схемой:


Таким образом, возникновения водородной связи следует ожидать в тех случаях, когда атом водорода в молекуле соединения непосредственно связан с атомом элемента, обладающего высокой электроотрицательностью. Чаще всего водородная связь проявляется в соединениях фтора, кислорода и в меньшей мере в соединениях азота.

Для оценки прочности связей между атомами лользуются понятием энергия связи. Энергия связи  это работа, необходимая для разрыва этой связи во всех молекулах, составляющих один моль вещества. Это одна из важнейших характеристик химической связи, измеряют её в килоджоулях на моль (кДж/моль). Энергия связи между двумя данными атомами зависит от её кратности, которая определяется числом электронных пар, связывающих эти атомы. С увеличением кратности связи возрастает и энергия связи. Например, энергия одинарной связи C–C в молекуле этана равна 263 кДж/моль, двойной связи C=C в этилене составляет 422 кДж/моль, тройной связи CC в молекуле ацетилена равна 535 кДж/моль. Важной характеристикой связи является также её длина, которая измеряется расстоянием между ядрами связанных атомов. При увеличении кратности связи её длина уменьшается: C–C 0,154 нм; C=C 0,134 нм; CC 0,120 нм.

Энергия водородной связи значительно меньше энергии ковалентной связи и в среднем составляет 10–40 кДж/моль (энергия ковалентной связи кислорода с водородом равна 460 кДж/моль, энергия связи атомов в молекуле азота  920 кДж/моль). Однако энергии водородной связи достаточно, чтобы вызвать ассоциацию молекул. Вследствие ассоциации, затрудняющей отрыв молекул друг от друга, такие вещества, как фтороводород, вода, аммиак, имеют более высокие, чем можно было ожидать, температуры плавления и кипения. Водородная связь обусловливает некоторые важные особенности воды, а также таких веществ, как белки и нуклеиновые кислоты.

Металлическая связь. Металлическая связь  это связь, в которой электроны каждого отдельного атома принадлежат всем атомам, находящимся в контакте. В результате перекрывания валентных орбиталей атомов возникают энергетические уровни, общее число которых равно числу взаимодействующих атомов. В кристалле, содержащем один моль атомов, количество энергетических уровней равно числу Авогадро, а разность энергий двух соседних уровней имеет порядок 10 -23 В. Поэтому образуется практически непрерывная энергетическая зона, в пределах которой переход электрона на ближайший более высокий уровень происходит очень легко.

Представление об энергетической электронной зоне является основополагающим принципом теории твердого тела. По аналогии с изолированным атомом, в котором имеются разрешенные и запрещённые энергетические уровни электронов, в кристаллах также существуют разрешенные и запрещённые зоны для электронов. В процессе образования кристалла по мере сближения атомов сначала происходит превращение внешних орбиталей в энергетические зоны, а при дальнейшем сближении атомов начинается перекрывание энергетических зон. Наличие в энергетической зоне металлов очень близких по энергии дозволенных подуровней дает возможность электронам перемещаться в кристалле довольно легко, что обеспечивает высокие электропроводность и теплопроводность металлов.

В отличие от металлов у кремния, например, при образовании кристалла происходит гибридизация атомных орбиталей типа sp 3 , что приводит к образованию единой валентной зоны, все 3s- и 3p-электроны которой вовлечены в образование химических связей. Вакантная 4я-зона  зона проводимости  отделена от валентной зоной запрещённых энергий. Из-за отсутствия электронов в зоне проводимости кремний при низких температурах не проводит электрический ток. Однако запрещённая зона у кремния очень узка и при нагревании, освещении или усилении электрического поля часть валентных электронов переходит в зону проводимости. Кремний становится проводником электрического тока. Такие вещества называются полупроводниками.

Состояние вещества

Вещество может находиться в газообразном, жидком, твердом состоянии и в состоянии плазмы.

Газообразное состояние вещества характеризуется сравнительно малыми силами межмолекулярного взаимодействия. Молекулы газов находятся на больших расстояниях друг от друга, поэтому газы имеют большую сжимаемость. Их молекулы находятся в псстоянном хаотическом движении, что объясняет способность газов равномерно заполнять весь предоставленный объём, приобретая объём и форму сосуда, в котором они находятся.

Жидкости по своим свойствам занимают промежуточное положение между газами и твердыми веществами. Чем выше температура, тем больше свойства жидкостей приближаются к свойствам газов, и, наоборот, чем ниже температура, тем больше проявляются те свойства жидкостей, которые приближают их к твердым веществам. Жидкости обычно не имеют собственной формы, а приобретают форму сосуда, в котором находятся; только в очень небольших количествах они способны сохранять форму капли. В отличие от газов жидкости при данной температуре занимают совершенно определенный объем. Это объясняется наличием заметных сил взаимного притяжения отдельных молекул жидкости. Молекулы в жидкостях размещаются значительно плотнее, чем в газах; этим и объясняется очень малая сжимаемость всех жидкостей. Рентгенографическое исследование жидкостей показало, что они имеют зачатки кристаллического строения.

Твёрдые вещества построены из молекул, атомов и ионов, прочно связанных между собой, и поэтому имеют определенные объем и форму. Частицы твердого вещества не могут свободно перемещаться, они сохраняют взаимное расположение, совершая колебания около центров равновесия, поэтому для изменения объема и формы твердого вещества требуется усилие. Различают два состояния твердых веществ  кристаллическое и аморфное. Кристаллы каждого кристаллического вещества имеют характерную для них форму. Так, кристаллы хлорида натрия имеют форму куба (рис. 12), нитрата калия  призмы и т. д.

Рис. 12. Схема и модель кристаллической решётки хлорида натрия.
Аморфные вещества представлявт собой агрегаты беспорядочно расположенных молекул. В отличие от кристаллических веществ, имеющих вполне определённую температуру плавления, аморфные вещества плавятся в широком диапазоне температур. При нагревании они постепенно размягчаются, начинают растекаться и, наконец, становятся жидкими. Аморфные вещества иногда рассматривают как жидкости с очень большой вязкостью. В зависимости от условий, при которых происходит переход из расплавленного состояния в твердое, одно и то же вещество можно получить как в кристаллическом, так и в аморфном состоянии.

Плазма  ионизированный газ с достаточно высокой концентрацией заряженных частиц, содержащий практически одинаковые количества частиц с положительным и отрицательным зарядами. В земных природных условиях плазма  явление редкое. В верхних слоях атмосферы, в значительной степени подвергающихся воздействию ионизирующих агентов, слабо ионизированная плазма  ионосфера  присутствует постоянно, а в космическом пространстве плазма представляет собой наиболее распространенное состояние вещества.

Кристаллические решётки

В кристаллических веществах частицы, из которых построены кристаллы, размещены в пространстве в определенном порядке и образуют лространственную решётку. В зависимости от характера частиц, находящихся в узлах пространственной решётки, различают молекулярные, атомные, ионные и металлические решётки (рис. 13).

В узлах молекулярной решётки находятся полярные или неполярные молекулы, связанные между собой слабыми силами притяжения. Молекулярную решётку имеют большинство органических веществ, а также ряд неорганических соединений, например, вода и аммиак. Вещества с молекулярной решёткой имеют сравнительно невысокую температуру плавления.

Атомная решётка характеризуется тем, что в её узлах размещены атомы, связанные между собой общими электронными парами. Вещества с атомной решёткой (например, алмаз) очень тверды и имеют очень высокую температуру плавления.

В узлах ионной решётки расположены положительно и отрицательно эаряженные ионы, чередующиеся друг с другом. Ионные кристаллические решётки характерны для большинства солей, оксидов и оснований.


Рис. 13. Основные типы кристаллических решёток твёрдого вещества.
В узлах металлической решётки наряду с нейтральными атомами размещаются положительно заряженные ионы данного металла. Между ними свободно перемещаются электроны  так называемый электронный газ. Такое строение металлов обусловливает их общие свойства: металлический блеск, электро- и теплопроводность, ковкость и др.

Прочность связи между частицами, из которых построен кристалл, характеризуется энергией кристаллической решётки  работой, необходимой для ее разрушения. Кристаллическая решётка разрушается лри плавлении, испарении (сублимации) или растворении вещества. Поэтому теплота плавления, теплота сублимации и теплота растворения зависят от энергии кристаллической решётки. При прочих равных условиях растворимость солей тем больше, чем меньше энергия их кристаллической решётки.

Все химические соединения образуются посредством образования химической связи. И в зависимости от типа соединяющихся частиц различают несколько видов. Самые основные – это ковалентная полярная, ковалентная неполярная, металлическая и ионная. Сегодня речь пойдет об ионной.

Вконтакте

Что такое ионы

Она образуется между двумя атомами – как правило, при условии, что разница электроотрицательностей между ними очень велика. Электроотрицательность атомов и ионов оценивается по шкале Поллинга.

Поэтому для того чтобы правильно рассматривать характеристики соединений, было введено понятие ионности. Эта характеристика позволяет определить на сколько процентов конкретная связь представляет именно ионную.

Соединение с максимальной ионностью это фторид цезия, в котором она составляет примерно 97%. Ионная связь характерна для веществ, образованных атомами металлов, располагающихся в первой и второй группе таблицы Д.И. Менделеева, и атомами неметаллов, находящихся в шестой и седьмой группах этой же таблицы.

Обратите внимание! Стоит заметить, что не существует соединения, в котором взаимосвязь исключительно ионная. Для открытых на данный момент элементов нельзя добиться настолько большой разницы в электроотрицательности, чтобы получить 100%-ное ионное соединение. Поэтому определение ионной связи не совсем корректно, так как реально рассматриваются соединения с частичным ионным взаимодействием.

Зачем же ввели этот термин, если реально такого явления не существует? Дело в том, что этот подход помог объяснить многие нюансы в свойствах солей, оксидов и других веществ. Например, почему они хорошо растворимы в воде, а их растворы способны проводить электрический ток . Это невозможно объяснить ни с каких других позиций.

Механизм образования

Образование ионной связи возможно только при соблюдении двух условий: если атом металла, участвующий в реакции, способен легко отдать электроны, находящиеся на последнем энергетическом уровне, а атом неметалла способен эти электроны принять. Атомы металлов по своей природе являются восстановителями, то есть способны к отдаче электронов .

Это связано с тем, что на последнем энергетическом уровне в металле могут находится от одного до трех электронов, а радиус самой частицы достаточно большой. Поэтому сила взаимодействия ядра с электронами на последнем уровне настолько мала, что они могут легко уходить с него. С неметаллами ситуация совершенно иная. Они имеют маленький радиус , а количество собственных электронов на последнем уровне может быть от трех и до семи.

И взаимодействие между ними и положительным ядром достаточно сильная, но любой атом стремится к завершению энергетического уровня, поэтому атомы неметалла стремятся получить недостающие электроны.

И когда встречаются два атома – металла и неметалла, происходит переход электронов от атома металла к атому неметалла, при этом образуется химическое взаимодействие.

Схема соединения

На рисунке наглядно видно, как именно осуществляется образование ионной связи. Изначально существуют нейтрально заряженные атомы натрия и хлора.

Первый имеет один электрон на последнем энергетическом уровне, второй семь. Далее происходит переход электрона от натрия к хлору и образование двух ионов. Которые соединяются между собой с образованием вещества. Что такое ион? Ион – это заряженная частица, в которой количество протонов не равно количеству электронов .

Отличия от ковалентного типа

Ионная связь за счет своей специфичности не имеет направленности. Это связано с тем, что электрическое поле иона представляет собой сферу, при том оно убывает или возрастает в одном направлении равномерно, подчиняясь одному и тому же закону.

В отличие от ковалентной, которая образуется за счет перекрывания электронных облаков.

Второе отличие заключается в том, что ковалентная связь насыщенна . Что это значит? Количество электронных облаков, которые могут принимать участие в взаимодействии ограниченно.

А в ионной за счет того, что электрическое поле имеет сферическую форму, оно может соединяться с неограниченным количеством ионов. А значит, можно говорить о том, что она не насыщена.

Также она может характеризоваться еще несколькими свойствами:

  1. Энергия связи – это количественная характеристика, и она зависит от количества энергии, которое необходимо затратить на ее разрыв. Она зависит от двух критериев – длины связи и заряда ионов , участвующих в ее образовании. Связь тем прочнее, чем короче ее длина и больше заряды ионов, ее формирующих.
  2. Длина – этот критерий уже упоминался в предыдущем пункте. Он зависит исключительно от радиуса частиц, участвующих в образовании соединения. Радиус атомов изменяется следующим образом: уменьшается по периоду при увеличении порядкового номера и увеличивается в группе.

Вещества с ионной связью

Она характерна для значительного числа химических соединений. Это большая часть всех солей, в том числе и всем известная поваренная соль. Она встречается во всех соединениях, где есть непосредственный контакт между металлом и неметаллом . Вот некоторые примеры веществ с ионной связью:

  • хлориды натрия и калия,
  • фторид цезия,
  • оксид магния.

Также она может проявляться и в сложных соединениях.

Например, сульфат магния.

Перед вами формула вещества с ионной и ковалентной связью:

Между ионами кислорода и магния будет образовываться ионная связь, а вот сера и соединены между собой уже с помощью ковалентной полярной.

Из чего можно сделать вывод, что ионная связь характерна для сложных химических соединений.

Что такое ионная связь в химии

Виды химической связи — ионная, ковалентная, металлическая

Вывод

Свойства напрямую зависят от устройства кристаллической решетки . Поэтому все соединения с ионной связью хорошо растворимы в воде и других полярных растворителях, проводят и являются диэлектриками. При этом довольно тугоплавки и хрупки. Свойства этих веществ довольно часто применяются в устройстве электрических приборов.

Ионная связь

Теория химической связи занимает важнейшее место в современной химии . Она объясняет, почему атомы объединяются в химические частицы , и позволяет сравнивать устойчивость этих частиц . Используя теорию химической связи , можно предсказать состав и строение различных соединений . Понятие о разрыве одних химических связей и образовании других лежит в основе современных представлений о превращениях веществ в ходе химических реакций .

Химическая связь - это взаимодействие атомов , обусловливающее устойчивость химической частицы или кристалла как целого . Химическая связь образуется за счет электростатического взаимодействия между заряженными частицами : катионами и анионами, ядрами и электронами . При сближении атомов начинают действовать силы притяжения между ядром одного атома и электронами другого, а также силы отталкивания между ядрами и между электронами . На некотором расстоянии эти силы уравновешивают друг друга , и образуется устойчивая химическая частица .

При образовании химической связи может произойти существенное перераспределение электронной плотности атомов в соединении по сравнению со свободными атомами .

В предельном случае это приводит к образованию заряженных частиц - ионов (от греческого "ион" - идущий).

1 Взаимодействие ионов

Если атом теряет один или несколько электронов , то он превращается в положительный ион - катион (в переводе с греческого – «идущий вниз »). Так образуются катионы водорода Н + , лития Li + , бария Ва 2+ . Приобретая электроны, атомы превращаются в отрицательные ионы - анионы (от греческого "анион" - идущий вверх ). Примерами анионов являются фторид ион F − , сульфид-ион S 2− .

Катионы и анионы способны притягиваться друг к другу . При этом возникает химическая связь , и образуются химические соединения . Такой тип химической связи называется ионной связью :

2 Определение Ионной связи

Ионная связь - это химическая связь, образованная за счет электростатического притяжения между катионами и анионами .

Механизм образования ионной связи можно рассмотреть на примере реакции между натрием и хлором . Атом щелочного металла легко теряет электрон , а атом галогена - приобретает . В результате этого возникает катион натрия и хлорид-ион . Они образуют соединение за счет электростатического притяжения между ними .

Взаимодействие между катионами и анионами не зависит от направления , поэтому о ионной связи говорят как о ненаправленной . Каждый катион может притягивать любое число анионов , и наоборот . Вот почему ионная связь является ненасыщенной . Число взаимодействий между ионами в твердом состоянии ограничивается лишь размерами кристалла . Поэтому "молекулой " ионного соединения следует считать весь кристалл .

Для возникновения ионной связи необходимо , чтобы сумма значений энергии ионизации E i (для образования катиона) и сродства к электрону A e (для образования аниона) должна быть энергетически выгодной . Это ограничивает образование ионной связи атомами активных металлов (элементы IA- и IIA-групп, некоторые элементы IIIA-группы и некоторые переходные элементы) и активных неметаллов (галогены, халькогены, азот).

Идеальной ионной связи практически не существует . Даже в тех соединениях, которые обычно относят к ионным , не происходит полного перехода электронов от одного атома к другому ; электроны частично остаются в общем пользовании . Так, связь во фториде лития на 80% ионная , а на 20% - ковалентная . Поэтому правильнее говорить о степени ионности (полярности ) ковалентной химической связи . Считают, что при разности электроотрицательностей элементов 2,1 связь является на 50% ионной . При большей разности соединение можно считать ионным .

Ионной моделью химической связи широко пользуются для описания свойств многих веществ , в первую очередь, соединений щелочных и щелочноземельных металлов с неметаллами . Это обусловлено простотой описания таких соединений : считают, что они построены из несжимаемых заряженных сфер , отвечающих катионам и анионам . При этом ионы стремятся расположиться таким образом, чтобы силы притяжения между ними были максимальными, а силы отталкивания - минимальными.

Ионная связь - прочная химическая связь, образующаяся между атомами с большой разностью (>1,7 по шкале Полинга) электроотрицательностей , при которой общая электронная пара полностью переходит к атому с большей электроотрицательностью. Это притяжение ионов как разноименно заряженных тел. Примером может служить соединение CsF, в котором «степень ионности» составляет 97 %.

Ионная связь - крайний случай поляризации ковалентной полярной связи . Образуется между типичными металлом и неметаллом . При этом электроны у металла полностью переходят к неметаллу . Образуются ионы.

Если химическая связь образуется между атомами, которые имеют очень большую разность электроотрицательностей (ЭО > 1.7 по Полингу) , то общая электронная пара полностью переходит к атому с большей ЭО . Результатом этого является образование соединения противоположно заряженных ионов :

Между образовавшимися ионами возникает электростатическое притяжение , которое называется ионной связью . Вернее, такой взгляд удобен . На деле ионная связь между атомами в чистом виде не реализуется нигде или почти нигде , обычно на деле связь носит частично ионный , и частично ковалентный характер . В то же время связь сложных молекулярных ионов часто может считаться чисто ионной . Важнейшие отличия ионной связи от других типов химической связи заключаются в ненаправленности и ненасыщаемости . Именно поэтому кристаллы, образованные за счёт ионной связи, тяготеют к различным плотнейшим упаковкам соответствующих ионов.

3 Ионные радиусы

В простой электростатической модели ионной связи используется понятие ионных радиусов . Сумма радиусов соседних катиона и аниона должна равняться соответстующему межъядерному расстоянию :

r 0 = r + + r

При этом остается неясным , где следует провести границу между катионом и анионом . Сегодня известно , что чисто ионной связи не существует , так как всегда имеется некоторое перекрывание электронных облаков . Для вычисления радиусов ионов используют методы исследования , которые позволяют определять электронную плотность между двумя атомами . Межъядерное расстояние делят в точке , где электронная плотность минимальна .

Размеры иона зависят от многих факторов . При постоянном заряде иона с ростом порядкового номера (а, следовательно, заряда ядра ) ионный радиус уменьшается . Это особенно хорошо заметно в ряду лантаноидов , где ионные радиусы монотонно меняются от 117 пм для (La 3+) до 100 пм (Lu 3+) при координационном числе 6 . Этот эффект носит название лантаноидного сжатия .

В группах элементов ионные радиусы в целом увеличиваются с ростом порядкового номера . Однако для d -элементов четвертого и пятого периодов вследствие лантаноидного сжатия может произойти даже уменьшение ионного радиуса (например, от 73 пм у Zr 4+ до 72 пм у Hf 4+ при координационном числе 4).

В периоде происходит заметно уменьшение ионного радиуса , связанное с усилением притяжения электронов к ядру при одновременном росте заряда ядра и заряда самого иона : 116 пм у Na + , 86 пм у Mg 2+ , 68 пм у Al 3+ (координационное число 6). По этой же причине увеличение заряда иона приводит к уменьшению ионного радиуса для одного элемента : Fe 2+ 77 пм, Fe 3+ 63 пм, Fe 6+ 39 пм (координационное число 4).

Сравнение ионных радиусов можно проводить только при одинаковом координационном числе , поскольку оно оказывает влияние на размер иона из-за сил отталкивания между противоионами . Это хорошо видно на примере иона Ag + ; его ионных радиус равен 81, 114 и 129 пм для координационных чисел 2, 4 и 6 , соответственно .

Структура идеального ионного соединения , обусловленная максимальным притяжением между разноименными ионами и минимальным отталкиванием одноименных ионов , во многом определяется соотношением ионных радиусов катионов и анионов . Это можно показать простыми геометрическими построениями.

4 Энергия ионной связи

Энергия связ и для ионного соединения - это энергия , которая выделяется при его образовании из бесконечно удаленных друг от друга газообразных противоионов . Рассмотрение только электростатических сил соответствует около 90% от общей энергии взаимодействия , которая включает также вклад неэлектростатических сил (например, отталкивание электронных оболочек ).

При возникновении ионной связи между двумя свободными ионами энергия их притяжения определяется законом Кулона :

E(прит.) = q+ q− / (4π r ε),

где q+ и q− - заряды взаимодействующих ионов , r - расстояние между ними , ε - диэлектрическая проницаемость среды .

Так как один из зарядов отрицателен , то значение энергии также будет отрицательным .

Согласно закону Кулона , на бесконечно малых расстояниях энергия притяжения должна стать бесконечно большой . Однако этого не происходит , так как ионы не являются точечными зарядами . При сближении ионов между ними возникают силы отталкивания , обусловленные взаимодействием электронных облаков . Энергия отталкивания ионов описывается уравнением Борна :

Е(отт.) = В / rn,

где В - некоторая константа , n может принимать значения от 5 до 12 (зависит от размера ионов ). Общая энергия определяется суммой энергий притяжения и отталкивания :

Е = Е(прит.) + Е(отт.)

Её значение проходит через минимум . Координаты точки минимума отвечают равновесному расстоянию r 0 и равновесной энергии взаимодействия между ионами E 0 :

E0 = q+ q− (1 - 1 / n) / (4π r0 ε)

В кристаллической решетке всегда имеет место большее число взаимодействий , чем между парой ионов . Это число определяется в первую очередь типом кристаллической решетки . Для учета всех взаимодействий (ослабевающих с увеличением расстояния) в выражение для энергии ионной кристаллической решетки вводят так называемую константу Маделунга А :

E(прит.) = A q+ q− / (4π r ε)

Значение константы Маделунга определяется только геометрией решетки и не зависит от радиуса и заряда ионов . Например, для хлорида натрия она равна 1,74756 .

5 поляризация ионов

Помимо величины заряда и радиуса важной характеристикой иона являются его поляризационные свойства . Рассмотрим этот вопрос несколько подробнее. У неполярных частиц (атомов, ионов, молекул) центры тяжести положительных и отрицательных зарядов совпадают . В электрическом поле происходит смещение электронных оболочек в направлении положительно заряженной пластины , а ядер - в направлении отрицательно заряженной пластины . Вследствие деформации частицы в ней возникает диполь , она становится полярной .

Источником электрического поля в соединениях с ионным типом связи являются сами ионы . Поэтому, говоря о поляризационных свойствах иона , необходимо различать поляризующее действие данного иона и способность его самого поляризоваться в электрическом поле .

Поляризующее действие иона будет тем большим , чем больше его силовое поле , т. е. чем больше заряд и меньше радиус иона . Поэтому в пределах подгрупп в Периодической системе элементов поляризующее действие ионов понижается сверху вниз , так как в подгруппах при постоянной величине заряда иона сверху вниз увеличивается его радиус .

Поэтому поляризующее действие ионов щелочных металлов например растет от цезия к литию , а в ряду галогенид-ионов - от I к F . В периодах поляризующее действие ионов растет слева направо вместе с увеличением заряда иона и уменьшением его радиуса .

Поляризуемость иона , способность его к деформации растут с уменьшением силового поля , т. е. с уменьшением величины заряда и увеличением радиуса . Поляризуемость анионов обычно выше , чем катионов и в ряду галогенидов растет от F к I .

На поляризационные свойства катионов оказывает влияние характер их внешней электронной оболочки . Поляризационные свойства катионов как в активном , так и в пассивном смысле при одинаковом заряде и близком радиусе растут при переходе от катионов с заполненной оболочкой к катионам с незаконченной внешней оболочкой и далее к катионам с 18-электронной оболочкой .

Например, в ряду катионов Mg 2+ , Ni 2+ , Zn 2+ поляризационные свойства усиливаются . Эта закономерность согласуется с изменением в приведенном в ряду радиуса иона и строения его электронной оболочки:

Для анионов поляризационные свойства ухудшаются в такой последовательности:

I - , Br - , Cl - , CN - , OH - , NO 3 - , F - , ClO 4 - .

Результатом поляризационного взаимодействия ионов является деформация их электронных оболочек и, как следствие этого, сокращение межионных расстояний и неполное разделение отрицательного и положительного зарядов между ионами.

Например, в кристалле хлорида натрия величина заряда на ионе натрия составляет +0,9 , а на ионе хлора - 0,9 вместо ожидаемой единицы . В молекуле KCl , находящейся в парообразном состоянии , величина зарядов на ионах калия и хлора составляет 0,83 единицы заряда , а в молекуле хлороводорода - лишь 0,17 единицы заряда.

Поляризация ионов оказывает заметное влияние на свойства соединений с ионной связью , понижая их температуры плавления и кипения , уменьшая электролитическую диссоциацию в растворах и расплавах и др .

Ионные соединения образуются при взаимодействии элементов , значительно различающихся по химическим свойствам . Чем больше удалены друг от друга элементы в периодической системе , тем в большей степени проявляется в их соединениях ионная связь . Напротив , в молекулах, образованных одинаковыми атомами или атомами элементов, близких по химическим свойствам , возникают другие типы связи . Поэтому теория ионной связи имеет ограниченное применение .

6 Влияние поляризации ионов на свойства веществ и свойства Ионной связи и ионных соединений

Представления о поляризации ионов помогают объяснить различия в свойствах многих однотипных веществ . Например, сравнение хлоридов натрия и калия с хлоридом серебра показывает, что при близких ионных радиусах

поляризуемость катиона Ag+ , имеющего 18-электронную внешнюю оболочку , выше , что приводит к увеличению прочности связи металл-хлор и меньшей растворимости хлорида серебра в воде .

Взаимная поляризация ионов облегчает разрушение кристаллов , что приводит к понижению температур плавления веществ . По этой причине температура плавления TlF (327 oС) существенно ниже , чем RbF (798 oC). Температура разложения веществ также понижатся с усилением взаимной поляризации ионов . Поэтому иодиды обычно разлагаются при более низких температурах , чем остальные галогениды , а соединения лития - термически менее устойчивы , чем соединения других щелочных элементов .

Деформируемость электронных оболочек сказывается и на оптических свойствах веществ . Чем более поляризована частица , тем ниже энергия электронных переходов . Если поляризация мала , возбуждение электронов требует более высокой энергии , что отвечает ультрафиолетовой части спектра . Такие вещества обычно бесцветны . В случае сильной поляризации ионов возбуждение электронов происходит при поглощении электромагнитного излучения видимой области спектра . Поэтому некоторые вещества , образованные бесцветными ионами, окрашены .

Характеристикой ионных соединений служит хорошая растворимость в полярных растворителях (вода, кислоты и т. д.) . Это происходит из-за заряженности частей молекулы . При этом диполи растворителя притягиваются к заряженным концам молекулы , и, в результате Броуновского движения , «растаскивают » молекулу вещества на части и окружают их , не давая соединиться вновь . В итоге получаются ионы окружённые диполями растворителя .

При растворении подобных соединений, как правило, выделяется энергия , так как суммарная энергия образованных связей растворитель-ион больше энергии связи анион-катион . Исключения составляют многие соли азотной кислоты (нитраты) , которые при растворении поглощают тепло (растворы охлаждаются ). Последний факт объясняется на основе законов, которые рассматриваются в физической химии .

7 Кристаллическая решётка

Ионные соединения (например, хлорид натрия NaCl) - твердые и тугоплавкие от того, что между зарядами их ионов ("+" и "–") существуют мощные силы электростатического притяжения .

Отрицательно заряженный ион хлора притягивает не только "свой " ион Na+ , но и другие ионы натрия вокруг себя . Это приводит к тому , что около любого из ионов находится не один ион с противоположным знаком , а несколько (рис. 1).

Рис. 1. Строение кристалла поваренной соли NaCl .

Фактически, около каждого иона хлора располагается 6 ионов натрия , а около каждого иона натрия - 6 ионов хлора .

Такая упорядоченная упаковка ионов называется ионным кристаллом . Если в кристалле выделить отдельный атом хлора , то среди окружающих его атомов натрия уже невозможно найти тот , с которым хлор вступал в реакцию . Притянутые друг к другу электростатическими силами , ионы крайне неохотно меняют свое местоположение под влиянием внешнего усилия или повышения температуры . Но если температура очень велика (примерно 1500°C ), то NaCl испаряется , образуя двухатомные молекулы . Это говорит о том, что силы ковалентного связывания никогда не выключаются полностью .

Ионные кристаллы отличаются высокими темпертурами плавления , обычно значительной шириной запрещенной зоны , обладают ионной проводимостью при высоких температурах и рядом специфических оптических свойств (например, прозрачностью в ближней области ИК спектра ). Они могут быть построены как из одноатомных , так и из многоатомных ионов . Пример ионных кристаллов первого типа - кристаллы галогенидов щелочных и щелочно-земельных металлов ; анионы располагаются по закону плотнейшей шаровой упаковки или плотной шаровой кладки , катионы занимают соответствующие пустоты . Наиболее характерные структуры такого типа - NaCl, CsCl, CaF2. Ионные кристаллы второго типа построены из одноатомных катионов тех же металлов и конечных или бесконечных анионных фрагментов . Конечные анионы (кислотные остатки) - NO3-, SO42-, СО32- и др . Кислотные остатки могут соединяться в бесконечные цепи , слои или образовывать трехмерный каркас , в полостях которого располагаются катионы , как, например, в кристаллических структурах силикатов . Для ионных кристаллов можно рассчитать энергию кристаллической структуры U (см. табл.), приближенно равную энтальпии сублимации ; результаты хорошо согласуются с экспериментальными данными . Согласно уравнению Борна-Майера , для кристалла , состоящего из формально однозарядных ионов :

U = -A/R + Ве-R/r - C/R6 - D/R8 + E0

(R - кратчайшее межионное расстояние , А - константа Маделунга , зависящая от геометрии структуры , В и r - параметры , описывающие отталкивание между частицами , C/R6 и D/R8 характеризуют соответствующие диполь-дипольное и диполь-квадрупольное взаимодействие ионов , E 0 - энергия нулевых колебаний , е - заряд электрона ). С укрупнением катиона возрастает вклад диполь-дипольных взаимодействий .