Где в параболе а и с. Что такое парабола. Расстояние между двумя скрещивающимися прямыми

Что такое парабола знают, пожалуй, все. А вот как ее правильно, грамотно использовать при решении различных практических задач, разберемся ниже.

Сначала обозначим основные понятия, которые дает этому термину алгебра и геометрия. Рассмотрим все возможные виды этого графика.

Узнаем все основные характеристики этой функции. Поймем основы построения кривой (геометрия). Научимся находить вершину, другие основные величины графика данного типа.

Узнаем: как правильно строится искомая кривая по уравнению, на что надо обратить внимание. Посмотрим основное практическое применение этой уникальной величины в жизни человека.

Что такое парабола и как она выглядит

Алгебра: под этим термином понимается график квадратичной функции.

Геометрия: это кривая второго порядка, имеющая ряд определенных особенностей:

Каноническое уравнение параболы

На рисунке изображена прямоугольная система координат (XOY), экстремум, направление ветвей чертежа функции вдоль оси абсцисс.

Каноническое уравнение имеет вид:

y 2 = 2 * p * x,

где коэффициент p – фокальный параметр параболы (AF).

В алгебре оно запишется иначе:

y = a x 2 + b x + c (узнаваемый шаблон: y = x 2).

Свойства и график квадратичной функции

Функция обладает осью симметрии и центром (экстремум). Область определения – все значения оси абсцисс.

Область значений функции – (-∞, М) или (М, +∞) зависит от направления ветвей кривой. Параметр М тут означает величину функции в вершине линии.

Как определить, куда направлены ветви параболы

Чтобы найти направление кривой такого типа из выражения, нужно определить знак перед первым параметром алгебраического выражения. Если а ˃ 0, то они направлены вверх. Если наоборот – вниз.

Как найти вершину параболы по формуле

Нахождение экстремума является основным этапом при решении множества практических задач. Конечно, можно открыть специальные онлайн калькуляторы, но лучше это уметь делать самому.

Как же ее определить? Есть специальная формула. Когда b не равно 0, надо искать координаты этой точки.

Формулы нахождения вершины:

  • x 0 = -b / (2 * a);
  • y 0 = y (x 0).

Пример.

Имеется функция у = 4 * x 2 + 16 * x – 25. Найдём вершины этой функции.

Для такой линии:

  • х = -16 / (2 * 4) = -2;
  • y = 4 * 4 - 16 * 2 - 25 = 16 - 32 - 25 = -41.

Получаем координаты вершины (-2, -41).

Смещение параболы

Классический случай, когда в квадратичной функции y = a x 2 + b x + c, второй и третий параметры равны 0, а = 1 – вершина находится в точке (0; 0).

Движение по осям абсцисс или ординат обусловлено изменением параметров b и c соответственно. Сдвиг линии на плоскости будет осуществляться ровно на то количество единиц, чему равно значение параметра.

Пример.

Имеем: b = 2, c = 3.

Это означает, что классический вид кривой сдвинется на 2 единичных отрезка по оси абсцисс и на 3 — по оси ординат.

Как строить параболу по квадратному уравнению

Школьникам важно усвоить, как правильно начертить параболу по заданным параметрам.

Анализируя выражения и уравнения, можно увидеть следующее:

  1. Точка пересечения искомой линии с вектором ординат будет иметь значение, равное величине с.
  2. Все точки графика (по оси абсцисс) будут симметричны относительно основного экстремума функции.

Кроме того, места пересечения с ОХ можно найти, зная дискриминант (D) такой функции:

D = (b 2 — 4 * a * c).

Для этого нужно приравнять выражение к нулю.

Наличие корней параболы зависит от результата:

  • D ˃ 0, то х 1, 2 = (-b ± D 0,5) / (2 * a);
  • D = 0, то х 1, 2 = -b / (2 * a);
  • D ˂ 0, то нет точек пересечения с вектором ОХ.

Получаем алгоритм построения параболы:

  • определить направление ветвей;
  • найти координаты вершины;
  • найти пересечение с осью ординат;
  • найти пересечение с осью абсцисс.

Пример 1.

Дана функция у = х 2 — 5 * х + 4. Необходимо построить параболу. Действуем по алгоритму:

  1. а = 1, следовательно, ветви направлены вверх;
  2. координаты экстремума: х = — (-5) / 2 = 5/2; y = (5/2) 2 - 5 * (5/2) + 4 = -15/4;
  3. с осью ординат пересекается в значении у = 4;
  4. найдем дискриминант: D = 25 - 16 = 9;
  5. ищем корни:
  • Х 1 = (5 + 3) / 2 = 4; (4, 0);
  • Х 2 = (5 - 3) / 2 = 1; (1, 0).

Пример 2.

Для функции у = 3 * х 2 — 2 * х — 1 нужно построить параболу. Действуем по приведенному алгоритму:

  1. а = 3, следовательно, ветви направлены вверх;
  2. координаты экстремума: х = — (-2) / 2 * 3 = 1/3; y = 3 * (1/3) 2 - 2 * (1/3) - 1 = -4/3;
  3. с осью у будет пересекаться в значении у = -1;
  4. найдем дискриминант: D = 4 + 12 = 16. Значит корни:
  • Х 1 = (2 + 4) / 6 = 1; (1;0);
  • Х 2 = (2 - 4) / 6 = -1/3; (-1/3; 0).

По полученным точкам можно построить параболу.

Директриса, эксцентриситет, фокус параболы

Исходя из канонического уравнения, фокус F имеет координаты (p/2, 0).

Прямая АВ – директриса (своего рода хорда параболы определенной длины). Ее уравнение: х = -р/2.

Эксцентриситет (константа) = 1.

Заключение

Мы рассмотрели тему, которую изучают школьники в средней школе. Теперь вы знаете, глядя на квадратичную функцию параболы, как найти её вершину, в какую сторону будут направлены ветви, есть ли смещение по осям, и, имея алгоритм построения, сможете начертить её график.

Остальным же читателям предлагаю существенно пополнить свои школьные знания о параболе и гиперболе. Гипербола и парабола – это просто? …Не дождётесь =)

Гипербола и её каноническое уравнение

Общая структура изложения материала будет напоминать предыдущий параграф. Начнём с общего понятия гиперболы и задачи на её построение.

Каноническое уравнение гиперболы имеет вид , где – положительные действительные числа. Обратите внимание, что в отличие от эллипса , здесь не накладывается условие , то есть, значение «а» может быть и меньше значения «бэ».

Надо сказать, довольно неожиданно… уравнение «школьной» гиперболы и близко не напоминает каноническую запись. Но эта загадка нас ещё подождёт, а пока почешем затылок и вспомним, какими характерными особенностями обладает рассматриваемая кривая? Раскинем на экране своего воображения график функции ….

У гиперболы две симметричные ветви.

Неплохой прогресс! Данными свойствами обладает любая гипербола, и сейчас мы с неподдельным восхищением заглянем в декольте этой линии:

Пример 4

Построить гиперболу, заданную уравнением

Решение : на первом шаге приведём данное уравнение к каноническому виду . Пожалуйста, запомните типовой порядок действий. Справа необходимо получить «единицу», поэтому обе части исходного уравнения делим на 20:

Здесь можно сократить обе дроби, но оптимальнее сделать каждую из них трёхэтажной :

И только после этого провести сокращение:

Выделяем квадраты в знаменателях:

Почему преобразования лучше проводить именно так? Ведь дроби левой части можно сразу сократить и получить . Дело в том, что в рассматриваемом примере немного повезло: число 20 делится и на 4 и на 5. В общем случае такой номер не проходит. Рассмотрим, например, уравнение . Здесь с делимостью всё печальнее и без трёхэтажных дробей уже не обойтись:

Итак, воспользуемся плодом наших трудов – каноническим уравнением :

Как построить гиперболу?

Существует два подхода к построению гиперболы – геометрический и алгебраический.
С практической точки зрения вычерчивание с помощью циркуля... я бы даже сказал утопично, поэтому гораздо выгоднее вновь привлечь на помощь нехитрые расчёты.

Целесообразно придерживаться следующего алгоритма, сначала готовый чертёж, потом комментарии:

На практике часто встречается комбинация поворота на произвольный угол и параллельного переноса гиперболы. Данная ситуация рассматривается на уроке Приведение уравнения линии 2-го порядка к каноническому виду .

Парабола и её каноническое уравнение

Свершилось! Она самая. Готовая раскрыть немало тайн. Каноническое уравнение параболы имеет вид , где – действительное число. Нетрудно заметить, что в своём стандартном положении парабола «лежит на боку» и её вершина находится в начале координат. При этом функция задаёт верхнюю ветвь данной линии, а функция – нижнюю ветвь. Очевидно, что парабола симметрична относительно оси . Собственно, чего париться:

Пример 6

Построить параболу

Решение : вершина известна, найдём дополнительные точки. Уравнение определяет верхнюю дугу параболы, уравнение – нижнюю дугу.

В целях сократить запись вычисления проведём «под одной гребёнкой» :

Для компактной записи результаты можно было свести в таблицу.

Перед тем, как выполнить элементарный поточечный чертёж, сформулируем строгое

определение параболы:

Параболой называется множество всех точек плоскости, равноудалённых от данной точки и данной прямой , не проходящей через точку .

Точка называется фокусом параболы, прямая – директрисой (пишется с одной «эс») параболы. Константа «пэ» канонического уравнения называется фокальным параметром , который равен расстоянию от фокуса до директрисы. В данном случае . При этом фокус имеет координаты , а директриса задаётся уравнением .
В нашем примере :

Определение параболы понимается ещё проще, чем определения эллипса и гиперболы. Для любой точки параболы длина отрезка (расстояние от фокуса до точки) равна длине перпендикуляра (расстоянию от точки до директрисы):

Поздравляю! Многие из вас сегодня сделали самое настоящие открытие. Оказывается, гипербола и парабола вовсе не являются графиками «рядовых» функций, а имеют ярко выраженное геометрическое происхождение.

Очевидно, что при увеличении фокального параметра ветви графика будут «раздаваться» вверх и вниз, бесконечно близко приближаясь к оси . При уменьшении же значения «пэ» они начнут сжиматься и вытягиваться вдоль оси

Эксцентриситет любой параболы равен единице:

Поворот и параллельный перенос параболы

Парабола – одна из самых распространённых линий в математике, и строить её придётся действительно часто. Поэтому, пожалуйста, особенно внимательно отнестись к заключительному параграфу урока, где я разберу типовые варианты расположения данной кривой.

! Примечание : как и в случаях с предыдущими кривыми, корректнее говорить о повороте и параллельном переносе координатных осей, но автор ограничится упрощённым вариантом изложения, чтобы у читателя сложились элементарные представления о данных преобразованиях.

Во всей этой главе предполагается, что в плоскости (в которой лежат все рассматриваемые далее фигуры) выбран определенный масштаб; рассматриваются лишь прямоугольные системы координат с этим масштабом.

§ 1. Парабола

Парабола известна читателю из школьного курса математики как кривая, являющаяся графиком функции

(рис. 76). (1)

График любого квадратного трехчлена

также является параболой; можно посредством одного лишь сдвига системы координат (на некоторый вектор ОО), т. е. преобразования

достигнуть того, чтобы график функции (во второй системе координат) совпадал с графиком (2) (в первой системе координат).

В самом деле, произведем подстановку (3) в равенство (2). Получим

Мы хотим подобрать так, чтобы коэффициент при и свободный член многочлена (относительно ) в правой части этого равенства были равны нулю. Для этого определяем из уравнения

что и дает

Теперь определяем из условия

в которое подставляем уже найденное значение . Получим

Итак, посредством сдвига (3), в котором

мы перешли к новой системе координат, в которой уравнение параболы (2) получило вид

(рис. 77).

Вернемся к уравнению (1). Оно может служить определением параболы. Напомним ее простейшие свойства. Кривая имеет ось симметрии: если точка удовлетворяет уравнению (1), то точка симметричная точке М относительно оси ординат, также удовлетворяет уравнению (1) - кривая симметрична относительно оси ординат (рис. 76).

Если , то парабола (1) лежит в верхней полуплоскости , имея с осью абсцисс единственную общую точку О.

При неограниченном возрастании модуля абсцисс ордината также неограниченно возрастает. Общий вид кривой дай на рис. 76, а.

Если (рис. 76, б), то кривая расположена в нижней полуплоскости симметрично относительно оси абсцисс к кривой .

Если перейти к новой системе координат, полученной из старой заменой положительного направления оси ординат на противоположное, то парабола, имеющая в старой системе уравнение , получит в новой системе координат уравнение у . Поэтому при изучении парабол можно ограничиться уравнениями (1), в которых .

Поменяем, наконец, названия осей, т. е. перейдем к иовой системе координат, в которой осью ординат будет старая ось абсцисс, а осью абсцисс - старая ось ординат. В этой новой системе уравнение (1) запишется в виде

Или, если число - обозначить через , в виде

Уравнение (4) называется в аналитической геометрии каноническим уравнением параболы; прямоугольная система координат, в которой данная парабола имеет уравнение (4), называется канонической системой координат (для этой параболы).

Сейчас мы установим геометрический смысл коэффициента . Для этого берем точку

называемую фокусом параболы (4), и прямую d, определенную уравнением

Эта прямая называется директрисой параболы (4) (см. рис. 78).

Пусть - произвольная точка параболы (4). Из уравнения (4) следует, что Поэтому расстояние точки М от директрисы d есть число

Расстояние точки М от фокуса F есть

Но , поэтому

Итак, все точки М параболы равноудалены от ее фокуса и директрисы:

Обратно, каждая точка М, удовлетворяющая условию (8), лежит на параболе (4).

В самом деле,

Следовательно,

и, после раскрытия скобок и приведения подобных членов,

Мы доказали, что каждая парабола (4) есть геометрическое место точек, равноудаленных от фокуса F и от директрисы d этой параболы.

Вместе с тем мы установили и геометрический смысл коэффициента в уравнении (4): число равно расстоянию между фокусом и директрисой параболы.

Пусть теперь на плоскости даны произвольно точка F и прямая d, не проходящая через эту точку. Докажем, что существует парабола с фокусом F и директрисой d.

Для этого проведем через точку F прямую g (рис. 79), перпендикулярную к прямой d; точку пересечения обеих прямых обозначим через D; расстояние (т. е. расстояние между точкой F и прямой d) обозначим через .

Прямую g превратим в ось, прнняв на ней направление DF в качестве положительного. Эту ось сделаем осью абсцисс прямоугольной системы координат, началом которой является середина О отрезка

Тогда и прямая d получает уравнение .

Теперь мы можем в выбранной системе координат написать каноническое уравнение параболы:

причем точка F будет фокусом, а прямая d - директрисой параболы (4).

Мы установили выше, что парабола есть геометрическое место точек М, равноудаленных от точки F и прямой d. Итак, мы можем дать такое геометрическое (т. е. не зависящее ни от какой системы координат) определение параболы.

Определение. Параболой называется геометрическое место точек, равноудаленных от некоторой фиксированной точки («фокуса» параболы) и некоторой фиксированной прямой («директрисы» параболы).

Установим основные свойства параболы. Рассечем прямой круговой конус с вершиной S плоскостью, параллельной одной из его образующих. В сечении получим параболу. Проведем через ось ST конуса плоскость АSB, перпендикулярную к плоскости (рис. 11). Образующая SА, лежащая в ней, будет параллельна плоскости. Впишем в конус шаровую поверхность, касающуюся конуса по окружности UV и касающуюся плоскости в точке F. Проведем через точку F прямую, параллельную образующей SA. Обозначим точку ее пересечения с образующей SB через P. Точка F называется фокусом параболы, точка Р - ее вершиной, а прямая РF, проходящая через вершину и фокус (и параллельная образующей SA), называется осью параболы. Второй вершины - точки пересечения оси РF с образующей SA у параболы не будет: эта точка «уходит в бесконечность». Назовем директрисой (в переводе значит «направляющая») линию q 1 q 2 пересечения плоскости с плоскостью, в которой лежит окружность UV. Возьмем на параболе произвольную точку М и соединим ее с вершиной конуса S. Прямая МS коснется шара в точке D, лежащей на окружности UV. Соединим точку М с фокусом F и опустим из точки М перпендикуляр МК на директрису. Тогда оказывается, что расстояния произвольной точки М параболы до фокуса (МF) и до директрисы (МК) равны друг другу (основное свойство параболы), т.е. МF=МК.

Доказательство: МF=MD (как касательные к шару из одной точки). Обозначим угол между любой из образующих конуса и осью ST через ц. Спроектируем отрезки МD и МК на ось ST. Отрезок MD образует проекцию на ось ST, равную МDcosц, так как MD лежит на образующей конуса; отрезок МК образует проекцию на ось ST, равную МКсоsц, так как отрезок МК параллелен образующей SA. (Действительно, директриса q 1 q 1 перпендикулярна плоскости АSB. Следовательно, прямая РF пересекает директрису в точке L под прямым углом. Но прямые МК и РF лежат в одной плоскости, причем МК тоже перпендикулярна директрисе). Проекции обоих отрезков МК и МD на ось ST равны друг другу, так как один их конец - точка М - общий, а два других D и К лежат в плоскости, перпендикулярной оси ST (рис.). Тогда МDcosц= МКсоsц или МD= МК. Следовательно, МF=MK.

Свойство 1. (Фокальное свойство параболы).

Расстояние от любой точки параболы до середины главной хорды равно её расстоянию до директрисы.

Доказательство.

Точка F - точка пересечения прямой QR и главной хорды. Эта точка лежит на оси симметрии Оу. Действительно, треугольники RNQ и ROF равны, как прямоугольные

треугольники с раными катетами (NQ=OF, OR=RN). Поэтому какую бы точку N мы не взяли, построенная по ней прямая QR пересечёт главную хорду в её середине F. Теперь ясно, что треугольник FMQ - равнобедренный. Действительно, отрезок MR является одновременно и медианой и высотой этого треугольника. Отсюда следует, что MF=MQ.

Свойство 2. (Оптическое свойство параболы).

Всякая касательная к параболе составляет равные углы с фокальным радиусом, проведённым в точку касания, и лучом, прходящим из точки касания и сонаправленным с осью (или, лучи, выходящие из единственного фокуса, отражаясь от параболы, пойдут параллельно оси).

Доказательство. Для точки N, лежащей на самой параболе справедливо равенство |FN|=|NH|, а для точки N", лежащей во внутренней области параболы, |FN"|<|N"H"|. Если теперь провести биссектрису l угла FМК, то для любой отличной от М точки M" прямой l найдём:

|FM"|=|M"K"|>|M"K"|, то есть точка M" лежит во внешней области параболы. Итак, вся прямая l, кроме точки М, лежит во внешней области, то есть внутренняя область параболы лежит по одну сторону от l, а это означает, что l - касательная к параболе. Это даёт доказательство оптического свойства параболы: угол 1 равен углу 2, так как l - биссектриса угла FМК.

Точка называется фокусом параболы, прямая - директрисой параболы, середина перпендикуляра, опущенного из фокуса на директрису, - вершиной параболы, расстояние от фокуса до директрисы - параметром параболы, а расстояние от вершины параболы до ее фокуса - фокусным расстоянием (рис.3.45,а). Прямая, перпендикулярная директрисе и проходящая через фокус, называется осью параболы (фокальной осью параболы). Отрезок , соединяющий произвольную точку параболы с ее фокусом, называется фокальным радиусом точки . Отрезок, соединяющий две точки параболы, называется хордой параболы.

Для произвольной точки параболы отношение расстояния до фокуса к расстоянию до директрисы равно единице. Сравнивая директориальные свойства эллипса, гиперболы и параболы, заключаем, что эксцентриситет параболы по определению равен единице .

Геометрическое определение параболы, выражающее ее директориальное свойство, эквивалентно ее аналитическому определению - линии, задаваемой каноническим уравнением параболы:

(3.51)

Действительно, введем прямоугольную систему координат (рис.3.45,6). Вершину параболы примем за начало системы координат; прямую, проходящую через фокус перпендикулярно директрисе, примем за ось абсцисс (положительное направление на ней от точки к точке ); прямую, перпендикулярную оси абсцисс и проходящую через вершину параболы, примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат оказалась правой).

Составим уравнение параболы, используя ее геометрическое определение, выражающее директориальное свойство параболы. В выбранной системе координат определяем координаты фокуса и уравнение директрисы . Для произвольной точки , принадлежащей параболе, имеем:

где - ортогональная проекция точки на директрису. Записываем это уравнение в координатной форме:

Возводим обе части уравнения в квадрат: . Приводя подобные члены, получаем каноническое уравнение параболы

т.е. выбранная система координат является канонической.

Проводя рассуждения в обратном порядке, можно показать, что все точки, координаты которых удовлетворяют уравнению (3.51), и только они, принадлежат геометрическому месту точек, называемому параболой. Таким образом, аналитическое определение параболы эквивалентно его геометрическому определению, выражающему директориальное свойство параболы.

Приведем следующие свойства параболы:

Свойство 10.10.

Парабола имеет ось симметрии.

Доказательство

Переменная y входит в уравнение только во второй степени. Поэтому, если координаты точки M (x ; y) удовлетворяют уравнению параболы, то и координаты точки N (x ; – y) будут ему удовлетворять. Точка N симметрична точке M относительно оси Ox . Следовательно, ось Ox является осью симметрии параболы в канонической системе координат.

Ось симметрии называется осью параболы. Точка пересечения параболы с осью называется вершиной параболы. Вершина параболы в канонической системе координат находится в начале координат.

Свойство 10.11.

Парабола расположена в полуплоскости x ≥ 0.

Доказательство

Действительно, так как параметр p положителен, то уравнению могут удовлетворять только точки с неотрицательными абциссами, то есть точки полуплоскости x ≥ 0.

При замене системы координат заданная в условии точка A с координатами будет иметь новые координаты, определяемые из соотношенийТаким образом, точка A будет иметь в канонической системе координатыДанную точкуназывают фокусом параболы и обозначают буквой F .

Прямая l , задаваемая в старой системе координат уравнением в новой системе координат будет иметь видили, опуская штриховку,

Данная прямая в канонической системе координат называется директрисой параболы. Расстояние от нее до фокуса называется фокальным параметромпараболы. Очевидно, он равен p . Эксцентриситет параболы по определению полагают равным единице, то есть ε = k = 1.

Теперь свойство, через которое мы определили параболу, в новых терминах можно сформулировать следующим образом: любая точка параболы равноудалена от ее фокуса и директрисы.

Вид параболы в канонической системе координат и расположение ее директрисы приведены на рис. 10.10.1.

Рисунок 10.10.1.

Над полем P, есть линейный оператор, если 1) для любых векторов2)для любого вектораи любого.

1) Матрица линейного оператора: Пусть φ-Л.О. векторного пространства V над полем P и один из базисов V: ПустьТогда матрица Л.О.φ:2) Связь между матрицами линейного оператора в разных базисах: M(φ) - матрица Л.О. φ в старом базисе. M1(φ) - матрица Л.О. φ в новом базисе. Т - матрица перехода от старшего базиса к новому базису.2)Действия над линейными операторами: Пусть φ и f - различные Л.О. векторного пространства V. Тогда φ+f - сумма линейных операторов φ и f. k·φ - умножение Л.О. на скаляр k. φ·f - произведение линейных операторов φ и f. Являюися также Л.О. вектороного пространства V.

4) Ядро линейного оператора: d(φ) - размерность ядра Л.О. φ (дефект).5) Образ линейного оператора: ranφ - ранг Л.О. φ (размерность Jmφ).6) Собсвенные векторы и собственные значения линейного вектора:

 Пусть φ - Л.О. векторного пространства V над полем P и иЕслито λ - собственное значение- собственный вектор Л.О. φ, отвечающий λ.

 Характеристическое уравнение Л.О. φ:

 Множество собственных векторов, отвечающих собственному значению λ:

 Л.О. вектороного пространства называются Л.О. с простым спектром, если φ, если φ имеет ровно n собственных значений.

 Если φ - Л.О. с простым спектром, то он имеет базис из собственных векторов, относительно которого матрица Л.О. φ диагональна.

2) Положение прямой в пространстве вполне определяется заданием какой-либо её фиксированной точки М 1 и вектора , параллельного этой прямой.

Вектор , параллельный прямой, называетсянаправляющим вектором этой прямой.

Итак, пусть прямая l проходит через точку М 1 (x 1 , y 1 , z 1 ), лежащую на прямой параллельно вектору .

Рассмотрим произвольную точку М(x,y,z) на прямой. Из рисунка видно, что .

Векторы иколлинеарны, поэтому найдётся такое числоt , что , где множительt может принимать любое числовое значение в зависимости от положения точки M на прямой. Множитель t называется параметром. Обозначив радиус-векторы точек М 1 и М соответственно через и, получаем. Это уравнение называетсявекторным уравнением прямой. Оно показывает, что каждому значению параметра t соответствует радиус-вектор некоторой точки М , лежащей на прямой.

Запишем это уравнение в координатной форме. Заметим, что ,иотсюда

Полученные уравнения называются параметрическими уравнениями прямой.

При изменении параметра t изменяются координаты x , y и z и точка М перемещается по прямой.

КАНОНИЧЕСКИЕ УРАВНЕНИЯ ПРЯМОЙ

Пусть М 1 (x 1 , y 1 , z 1 ) – точка, лежащая на прямой l , и – её направляющий вектор. Вновь возьмём на прямой произвольную точкуМ(x,y,z) и рассмотрим вектор .

Ясно, что векторы иколлинеарные, поэтому их соответствующие координаты должны быть пропорциональны, следовательно,

канонические уравнения прямой.

Замечание 1. Заметим, что канонические уравнения прямой можно было получить из параметрических,исключив параметрt . Действительно, из параметрических уравнений получаем или.

Пример. Записать уравнение прямой в параметрическом виде.

Обозначим , отсюдаx = 2 + 3t , y = –1 + 2t , z = 1 –t .

Замечание 2. Пусть прямая перпендикулярна одной из координатных осей, например оси Ox . Тогда направляющий вектор прямой перпендикуляренOx , следовательно, m =0. Следовательно, параметрические уравнения прямой примут вид

Исключая из уравнений параметр t , получим уравнения прямой в виде

Однако и в этом случае условимся формально записывать канонические уравнения прямой в виде. Таким образом, еслив знаменателе одной из дробей стоит нуль, то это означает, что прямая перпендикулярна соответствующей координатной оси.

Аналогично, каноническим уравнениям соответствует прямая перпендикулярная осямOx и Oy или параллельная оси Oz .

Примеры.

Канонические уравнения: .

Параметрические уравнения:

    Составить уравнения прямой, проходящей через две точки М 1 (-2;1;3), М 2 (-1;3;0).

Составим канонические уравнения прямой. Для этого найдем направляющий вектор . Тогдаl :.

ОБЩИЕ УРАВНЕНИЯ ПРЯМОЙ, КАК ЛИНИИ ПЕРЕСЕЧЕНИЯ ДВУХ ПЛОСКОСТЕЙ

Через каждую прямую в пространстве проходит бесчисленное множество плоскостей. Любые две из них, пересекаясь, определяют ее в пространстве. Следовательно, уравнения любых двух таких плоскостей, рассматриваемые совместно представляют собой уравнения этой прямой.

Вообще любые две не параллельные плоскости, заданные общими уравнениями

определяют прямую их пересечения. Эти уравнения называются общими уравнениями прямой.

Примеры.

Построить прямую, заданную уравнениями

Для построения прямой достаточно найти любые две ее точки. Проще всего выбрать точки пересечения прямой с координатными плоскостями. Например, точку пересечения с плоскостью xOy получим из уравнений прямой, полагаяz = 0:

Решив эту систему, найдем точку M 1 (1;2;0).

Аналогично, полагая y = 0, получим точку пересечения прямой с плоскостьюxOz :

От общих уравнений прямой можно перейтик её каноническим или параметрическим уравнениям. Для этого нужно найти какую-либо точку М 1 на прямой и направляющий вектор прямой.

Координаты точки М 1 получим из данной системы уравнений, придав одной из координат произвольное значение. Для отыскания направляющего вектора, заметим, что этот вектор должен быть перпендикулярен к обоим нормальным векторам и. Поэтому за направляющий векторпрямойl можно взять векторное произведение нормальных векторов:

.

Пример. Привести общие уравнения прямой к каноническому виду.

Найдём точку, лежащую на прямой. Для этого выберем произвольно одну из координат, например, y = 0 и решим систему уравнений:

Нормальные векторы плоскостей, определяющих прямую имеют координаты Поэтому направляющий вектор прямой будет

. Следовательно, l : .

1) Пусть и - два базиса в R n .

Определение. Матрицей перехода от базиса к базису называется матрица C, столбцами которой являются координаты векторов в базисе :

Матрица перехода обратима, поскольку векторы базиса линейно независимы и, следовательно,

Вектор линейно выражается через векторы обоих базисов. Связь координат вектора в разных базисах установлена в следующей теореме.

Теорема. Если

то координаты вектора в базисе , и его координаты в базисе связаны соотношениями

где - матрица перехода от базиса к базису , - векторы-столбцы координат вектора в базисах и соответственно.

2)Взаимное расположение двух прямых

Если прямые заданы уравнениями ито они:

1) параллельны (но не совпадают)

2) совпадают

3) пересекаются

4) скрещиваются

Если то случаи 1 - 4 имеют место, когда (- знак отрицания условия):

3)

4)

Расстояние между двумя параллельными прямыми

В координатах

Расстояние между двумя скрещивающимися прямыми

В координатах

Угол между двумя прямыми

Необходимое и достаточное условие перпендикулярности двух прямых

Или

Взаимное расположение прямой и плоскости

Плоскость и прямая

1) пересекаются

2) прямая лежит в плоскости

3) параллельны

Если то случаи 1 - 3 имеют место, когда:

1)

Необходимое и достаточное условие параллельности прямой и плоскости

Угол между прямой и плоскостью

Точка пересечения прямой с плоскостью

В координатах:

Уравнения прямой, проходящей через точку перпендикулярно к плоскости

В координатах:

1) Очевидно, что система линейных уранвений может быть записана в виде:

x 1 + x 2 + … + x n

Доказательство.

1) Если решение существует, то столбец свободных членов есть линейная комбинация столбцов матрицы А, а значит добавление этого столбца в матрицу, т.е. переход АА * не изменяют ранга.

2) Если RgA = RgA * , то это означает, что они имеют один и тот жебазисный минор. Столбец свободных членов – линейная комбинация столбцов базисного минора, те верна запись, приведенная выше.

2) Плоскость в пространстве.

Получим сначала уравнение плоскости, проходящей через точку М 0 0 0 , z 0 ) перпендикулярно вектору n = {A , B , C },называемому нормалью к плоскости. Для любой точки плоскости М(х, у, z ) вектор М 0 М = {x - x 0 , y - y 0 , z - z 0 ) ортогонален вектору n , следовательно, их скалярное произведение равно нулю:

A (x - x 0 ) + B (y - y 0 ) + C (z - z 0 ) = 0. (8.1)

Получено уравнение, которому удовлетворяет любая точка заданной плоскости – уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору.

После приведения подобных можно записать уравнение (8.1) в виде:

Ax + By + Cz + D = 0, (8.2)

где D = -Ax 0 - By 0 - Cz 0 . Это линейное уравнение относительно трех переменных называют общим уравнением плоскости .

Неполные уравнения плоскости.

Если хотя бы одно из чисел А, В, С, D равно нулю, уравнение (8.2) называют неполным.

Рассмотрим возможные виды неполных уравнений:

1) D = 0 – плоскость Ax + By + Cz = 0 проходит через начало координат.

2) А = 0 – n = {0,B , C }Ox , следовательно, плоскость By + Cz + D = 0 параллельна оси Ох .

3) В = 0 – плоскость Ax + Cz + D = 0 параллельна оси Оу .

4) С = 0 – плоскость Ax + By + D = 0 параллельна оси О z .

5) А = В = 0 – плоскость Cz + D Оху (так как она параллельна осям Ох и Оу ).

6) А = С = 0 – плоскость Ву + D = 0 параллельна координатной плоскости Ох z .

7) B = C = 0 – плоскость Ax + D = 0 параллельна координатной плоскости Оу z .

8) А = D = 0 – плоскость By + Cz = 0 проходит через ось Ох .

9) B = D = 0 – плоскость Ах + С z = 0 проходит через ось Оу .

10) C = D = 0 - плоскость Ax + By = 0 проходит через ось Oz .

11) A = B = D = 0 – уравнение С z = 0 задает координатную плоскость Оху.

12) A = C = D = 0 – получаем Ву = 0 – уравнение координатной плоскости Ох z .

13) B = C = D = 0 – плоскость Ах = 0 является координатной плоскостью Оу z .

Если же общее уравнение плоскости является полным (то есть ни один из коэффициентов не равен нулю), его можно привести к виду:

называемому уравнением плоскости в отрезках . Способ преобразования показан в лекции 7. Параметры а, b и с равны величинам отрезков, отсекаемых плоскостью на координатных осях.

1) Однородные системы линейных уравнений

Однородная система линейных уравнений AX = 0 всегда совместна. Она имеет нетривиальные (ненулевые) решения, если r = rankA < n .

Для однородных систем базисные переменные (коэффициенты при которых образуют базисный минор) выражаются через свободные переменные соотношениями вида:

Тогда n - r линейно независимыми вектор-решениями будут:

а любое другое решение является их линейной комбинацией. Вектор-решения образуют нормированную фундаментальную систему.

В линейном пространстве множество решений однородной системы линейных уравнений образует подпространство размерностиn - r ; - базис этого подпространства.