Звёздная величина. Шкала звездных величин Суммарная звездная величина

Даже далекие от астрономии люди знают, что звезды имеют разный блеск. Наиболее яркие звезды без труда видны на засвеченном городском небе, а самые тусклые едва различимы при идеальных условиях наблюдения.

Для характеристики блеска звезд и других небесных светил (например, планет, метеоров, Солнца и Луны) ученые выработали шкалу звездных величин.

Видимая звездная величина (m; часто ее называют просто "звездная величина") указывает поток излучения вблизи наблюдателя, т. е. наблюдаемую яркость небесного источника, которая зависит не только от реальной мощности излучения объекта, но и от расстояния до него.

Это безразмерная астрономическая величина, характеризующая создаваемую небесным объектом вблизи наблюдателя освещенность.

Освещённость – световая величина, равная отношению светового потока, падающего на малый участок поверхности, к его площади.
Единицей измерения освещённости в Международной системе единиц (СИ) служит люкс (1 люкс = 1 люмену на квадратный метр), в СГС (сантиметр-грамм-секунда) – фот (один фот равен 10 000 люксов).

Освещённость прямо пропорциональна силе света источника света. При удалении источника от освещаемой поверхности её освещённость уменьшается обратно пропорционально квадрату расстояния (закон обратных квадратов).

Субъективно видимая звездная величина воспринимается как блеск (у точечных источников) или яркость (у протяженных).

При этом блеск одного источника указывают путем его сравнения с блеском другого, принятого за эталон. Такими эталонами обычно служат специально подобранные непеременные звезды.

Звездную величину сначала ввели как указатель видимого блеска звезд в оптическом диапазоне, но позже распространили и на другие диапазоны излучения: инфракрасный, ультрафиолетовый.

Таким образом, видимая звёздная величина m или блеск является мерой освещённости Е, создаваемой источником на перпендикулярной к его лучам поверхности в месте наблюдения.

Исторически все началось более 2000 лет назад, когда древнегреческий астроном и математик Гиппарх (II век до нашей эры) поделил видимые глазом звезды на 6 величин.

Самым ярким звездам Гиппарх присвоил первую звездную величину, а самым тусклым, едва видимым глазом, – шестую, остальные равномерно распределил по промежуточным величинам. Причем, разделение на звездные величины Гиппарх произвел так, чтобы звезды 1-й величины казались настолько ярче звезд 2-й величины, насколько те кажутся ярче звезд 3-й величины и т. д. То есть от градации к градации блеск звезд изменялся на одну и ту же величину.

Как позже выяснилось, связь такой шкалы с реальными физическими величинами логарифмическая, поскольку изменение яркости в одинаковое число раз воспринимается глазом как изменение на одинаковую величину – эмпирический психофизиологический закон Вебера – Фехнера , согласно которому интенсивность ощущения прямо пропорциональна логарифму интенсивности раздражителя.

Это связано с особенностями человеческого восприятия, для примера, если в люстре последовательно зажигается 1, 2, 4, 8, 16 одинаковых лампочек, то нам кажется, что освещенность в комнате все время увеличивается на одну и ту же величину. То есть количество включаемых лампочек должно увеличиваться в одинаковое число раз (в примере вдвое), чтобы нам казалось, что прирост яркости постоянен.

Логарифмическая зависимость силы ощущения Е от физической интенсивности раздражителя Р выражается формулой:

Е = к log P + a, (1)

где k и a – некие постоянные, определяемые данной сенсорной системой.

В середине 19 в. английский астроном Норман Погсон осуществил формализацию шкалы звездных величин, которая учитывала психофизиологический закон зрения.

Основываясь на реальных результатах наблюдений, он постулировал, что

ЗВЕЗДА ПЕРВОЙ ВЕЛИЧИНЫ РОВНО В 100 РАЗ ЯРЧЕ ЗВЕЗДЫ ШЕСТОЙ ВЕЛИЧИНЫ.

При этом в соответствии с выражением (1) видимая звездная величина определяется равенством:

m = -2,5 lg E + a, (2)

2,5 – коэффициент Погсона, знак минус – дань исторической традиции (более яркие звезды имеют меньшую, в т. ч. отрицательную, звездную величину);
a – нуль-пункт шкалы звёздных величин, устанавливаемый международным соглашением, связанным с выбором базовой точки измерительной шкалы.

Если Е 1 и Е 2 соответствуют звёздным величинам m 1 и m 2 , то из (2) следует, что:

E 2 /E 1 = 10 0,4(m 1 - m 2) (3)

Уменьшение звездной величины на единицу m1 - m2 = 1 приводит к увеличению освещённости Е примерно в 2,512 раза. При m 1 - m 2 = 5, что соответствует диапазону от 1-й до 6-й звездной величины, изменение освещенности будет Е 2 /Е 1 =100.

Формула Погсона в её классическом виде устанавливает связь между видимыми звездными величинами:

m 2 - m 1 = -2,5 (lgE 2 - lgE 1) (4)

Данная формула позволяет определять разницу звёздных величин, но не сами величины.

Чтобы с её помощью построить абсолютную шкалу, необходимо задать нуль-пункт – блеск, которому соответствует нулевая звездная величина (0 m). Сначала в качестве 0 m был принят блеск Веги. Потом нуль-пункт был переопределён, но для визуальных наблюдений Вега до сих пор может служить эталоном нулевой видимой звёздной величины (по современной системе, в полосе V системы UBV, её блеск равен +0,03 m , что на глаз неотличимо от нуля).

Обычно же нуль-пункт шкалы звездных величин принимают условно по совокупности звезд, тщательная фотометрия которых выполнена различными методами.

Также за 0 m принята вполне определенная освещенность, равная энергетической величине E=2,48*10 -8 Вт/м². Собственно, именно освещенность и определяют при наблюдениях астрономы, а уже потом ее специально переводят в звездные величины.

Делают они это не только потому что «так привычнее», но и потому что звездная величина оказалась очень удобным понятием.

звездная величина оказалась очень удобным понятием

Измерять освещенность в ваттах на квадратный метр крайне громоздко: для Солнца величина получается большой, а для слабых телескопических звезд – очень маленькой. В то же время оперировать звездными величинами гораздо легче, так как логарифмическая шкала исключительно удобна для отображения очень больших диапазонов значений величин.

Погсоновская формализация в последующем стала стандартным методом оценки звёздной величины.

Правда, современная шкала уже не ограничивается шестью звездными величинами или только видимым светом. Очень яркие объекты могут иметь отрицательную звездную величину. Например, Сириус, ярчайшая звезда небесной сферы, имеет звездную величину минус 1,47 m . Современная шкала позволяет также получить значение для Луны и Солнца: полнолуние имеет звездную величину -12,6 m , а Солнце -26,8 m . Орбитальный телескоп «Хаббл» может наблюдать объекты, блеск которых составляет величины примерно до 31,5 m .

Шкала звездных величин
(шкала – обратная: меньшим значениям соответствуют более яркие объекты)

Видимые звездные величины некоторых небесных тел

Солнце: -26,73
Луна (в полнолуние): -12,74
Венера (в максимуме блеска): -4,67
Юпитер (в максимуме блеска): -2,91
Сириус: -1,44
Вега: 0,03
Самые слабые звезды, видимые невооруженным глазом: около 6,0
Солнце с расстояния 100 световых лет: 7,30
Проксима Центавра: 11,05
Самый яркий квазар: 12,9
Самые слабые объекты, снимки которых получены телескопом «Хаббл»: 31,5

(освещенности слишком малы), и самое главное, исторически сложилось так, что блеск звезд стали измерять задолго до введения физиками понятия освещенность, используя внесистемную единицу измерения - звездную величину m * .

Таблица. Физические характеристики Солнца

см/сек2

4m .8

12.2. Звездные величины

Звездные величины были введены Гиппархом во II веке до н.э. Он разделил видимые невооруженным глазом звезды по степени их яркости на шесть классов - звездных величин. Самые яркие звезды принадлежали к первому классу - имели первую звездную величину, а самые слабые принадлежали к шестому классу и имели шестую звездную величину

(обозначение соответственно 1m и 6m ). Таким образом, важно запомнить, что чем больше звездная величина, тем слабее звезда.

Связь между освещенностями и звездными величинами была установлена в XIX веке Погсоном, и она определяет отношение освещенностей, создаваемых двумя звездами, через разность их звездных величин:

В качестве начала отсчета звездных величин была выбрана звезда Вега ( Lyr). Условились

Кроме того, в настоящее время используют дробные значения звездных величин, а более яркие звезды, чем Вега, имеют отрицательные звездные величины. Например, Сириус ( CMa) имеет блеск m =-1m .58.

Совершенно очевидно, что звездная величина практически ничего не говорит нам о действительной светимости звезды. Яркая звезда первой звездной величины может быть близкой звездой-карликом низкой светимости, а слабенькая звездочка шестой звездной величины оказаться очень далеким сверхгигантом огромной светимости. Поэтому для характеристики светимости звезд введена шкала абсолютных звездных величин M . Абсолютная звездная величина - это звездная величина, которую бы имела эта звезда, находясь на расстоянии 10 пк . Связь между видимой и абсолютной звездной величиной легко найти, используя закон Погсона и выражая расстояние до звезды в парсеках:

Окончательно получим:

Светимости звезд в светимостях Солнца удобно выражать через абсолютную звездную величину Солнца :

12.3. Спектры звезд. Эффект Допплера

Кроме рассмотренных выше интегральных (по всем длинам волн) освещенностей E ,

создаваемых звездами, можно ввести еще монохроматические освещенности

определяемые как количество энергии, приходящее от звезды на перпендикулярную единичную площадку за единицу времени в единичном интервале длин волн (=эрг/(см

У разных звезд на разные длины волн приходится различное количество энергии, поэтому рассматривают распределение энергии по длинам волн и называют его еще спектральным распределением энергии или просто спектром звезды. В зависимости от температуры звезды максимум в спектральном распределении приходится на разные длины волн. Чем звезда горячее, тем на меньшие длины волн приходится максимум ее спектрального распределения энергии. Поэтому горячие звезды по цвету являются голубыми и белыми, а холодные - желтыми и красными.

В спектрах звезд на фоне непрерывного спектра заметны многочисленные темные относительно узкие линии поглощения. Они образуются при переходах между энергетическими уровнями различных атомов и ионов в поверхностных слоях звезды. Каждый переход характеризуется вполне определенной длиной волны. Однако в

наблюдаемых спектрах звезд длины волн этих переходов не совпадают с лабораторными

Земли. Вследствие движения звезды все наблюдаемые длины волн смещаются относительно своих лабораторных значений, благодаря эффекту Допплера. Если звезда к нам приближается, линии в ее спектре смещаются в синюю область спектра, а если удаляется от нас, то в красную. Величина смещения z зависит от скорости звезды вдоль луча зрения v r :

Здесь c =300 000 км/сек это скорость света в вакууме.

Таким образом, изучая смещения линий в спектрах звезд и других небесных тел относительно их лабораторных положений, мы можем получить богатую информацию о лучевых скоростях звезд, о скоростях расширения оболочек звезд (звездный ветер, взрывы Новых и Сверхновых звезд), изучать спектрально-двойные звезды.

12.4. Галактики. Закон Хаббла

В начале XX века было окончательно доказано, что кроме нашей звездной системы, Галактики (Млечный Путь), куда входит Солнце и еще около ста миллиардов звезд, существуют и другие звездные системы - галактики, удаленные от нас на сотни и тысячи

мегапарсек (1 Мпк =106 пк ) и так же состоящие из десятков и сотен миллиардов звезд.

В 1929 году Эдвин Хаббл обнаружил, что в спектрах галактик наблюдается удивительная закономерность: чем дальше от нас расположена галактика, тем больше смещены в красную сторону линии в ее спектре. Это означает, что чем дальше от нас расположена галактика, тем быстрее она от нас удаляется. Эта закономерность получила название закона Хаббла:

Величина 50-100 км/(сек Мпк ) носит название постоянной Хаббла. Используя этот закон, мы можем, зная величину красного смещения z , определять расстояние до галактик в

Мпк.

Закон Хаббла означает, что наша Вселенная (или Метагалактика) расширяется, и взаимные расстояния между галактиками непрерывно увеличиваются. Необходимо заметить, что закон

Хаббла не является абсолютно точным и применим лишь при скоростях удаления или . При 0.1 необходимо учитывать релятивистские поправки.

67. Определить светимость звезды Альтаир ( Aql), если расстояние до нее d =5 пк , а видимая звездная величина m =0m .9.

Решение: Прежде всего, необходимо найти абсолютную звездную величину Альтаира: M =m +5-5 lg 5 = 2m .4. Затем, сравнивая ее с абсолютной звездной величиной Солнца

, найти светимость Альтаира, выраженную в светимостях Солнца:

Или , откуда

68. Новая звезда 1901 г., вспыхнувшая в созвездии Персея, за двое суток увеличила свой блеск с 12m до 2m . Во сколько раз увеличилась ее яркость (создаваемая ею освещенность)?

Решение: Воспользуемся законом Погсона lg (E 1 /E 2 ) = -0.4(m 1 -m 2 )= -0.4 (2-12)=4. Значит, яркость увеличилась в 104 раз.

69. Определить радиус звезды, если ее температура T eff = 13000 K, а светимость ?

Решение: Воспользуемся формулой (43 ) и выведем из нее, что

Подставив известные значения и помня, что = 6000 K, вычислим, что .

70. (786) Какова суммарная звездная величина двойной звезды Андромеды, если звездные

величины ее компонентов равны 2m .28 и 5m .08?

Решение: При решении такого рода задач надо помнить, что можно суммировать освещенности, создаваемые разными звездами, но не их звездные величины.

Прежде всего найдем отношение освещенностей, создаваемых компонентами звезды lg E2 /E 1 = -0.4(5.08-2.28)=-1.12 или E 2 /E 1 = 0.076. Суммарная звездная величина компонент также определяется из закона Погсона m -m 1 =-2.5 lg ((E 1 +E 2 )/E 1 )= -2.5 lg (1+0.076) или m =m 1 -

0.08=2m .20.

71. (760) В спектре звезды линия кальция с = 4227 оказалась смещенной к синему

концу спектра на 0.7 . Определить, с какой скоростью звезда движется по лучу зрения, и удаляется она или приближается?

Решение: Поскольку линия смещена к синему концу спектра, следовательно, звезда приближается к нам, а из формулы (49 ) очевидно, что

49.7 км/сек.

72. (756) Сколько звезд 6-й величины имеют такой же блеск, как одна звезда 1-й величины?

73. (755) Пусть некоторая звезда периодически пульсирует при постоянной температуре поверхности. На сколько звездных величин изменяется при этом ее блеск, если минимальный радиус звезды в 2 раза больше максимального?

74. (1014) Расстояние до Сириуса составляет 2.7 пс , но из-за взаимных движений Солнца и Сириуса уменьшается со скоростью 8 км/сек. Через сколько лет яркость Сириуса возрастет в 2 раза?

75. (759) Звезд 6-й величины на северном небе 2000. Во сколько раз создаваемая ими освещенность больше освещенности, создаваемой Сириусом m =-1m .6?

76. (764) В спектре Новой 1934 г. в Геркулесе темные линии были смещены относительно нормального положения к синему концу. Линия (=4341 ) оказалась смещена на

10.1 . Какова скорость расширения оболочки звезды?

77. (1093) Двойная звезда Гидры имеет период обращения 15.3 года, параллакс 0".02 и угловые размеры большой полуоси орбиты 0".23. Определить линейные размеры большой полуоси и сумму масс компонентов.

78. (788) Звезда Центавра двойная, причем ее суммарная звездная величина 0m .06.

Звездная величина более яркого компонента 0m .33. Какова звездная величина менее яркого компонента?

79. (1002) Во сколько раз светимость звезды Ближайшая Центавра (Proxima Centauri), для которой , меньше светимости Солнца.

80. (1000) Вычислить абсолютную звездную величину Сириуса, зная, что его параллакс равен 0".371, а видимая звездная величина m=-1m .58.

Представляем вашему вниманию несколько терминов, с которыми ваши познания в астрономии станут более глубокими.

Видимая звездная величина

Количество звезд на ночном небе, доступных невооруженному взгляду, не так велико, как кажется. Если иметь хорошую остроту зрения и выбраться за город, подальше от уличного освещения, то для наблюдения будут доступны около 6000 звезд. При этом половина из них всегда будет скрыта от наблюдателя за горизонтом. Но даже этого количества достаточно, чтобы заметить, насколько звезды отличаются по своей яркости. Замечали это и античные ученые. Живший во II веке до нашей эры древнегреческий математик и астроном Гиппарх разделил все наблюдаемые им звезды на шесть величин. Самые яркие он отнес к первой величине, самые тусклые – к шестой. В целом, этот принцип используется и сейчас. Но сегодня возможности астрономии позволяют наблюдать бесчисленное количество звезд, большинство из которых настолько тусклые, что наблюдать невооруженным взглядом их невозможно. А само понятие звездной величины применяется не только для далеких звезд, но и для других объектов – Солнца, Луны, искусственных спутников, планет и так далее. Поэтому и считается, что звездная величина – это безразмерная числовая характеристика яркости объекта.

Как следует из вышесказанного, видимая звездная величина самых ярких объектов будет отрицательная. Для сравнения, звездная величина Солнца равна –26,7, а звездная величина ближайшей к нашему светилу, но не видимой невооруженным взглядом звезды Проксима Центавра составляет +11,1. Максимальная звездная величина Марса равна? 2,91. Спутник «Маяк», который создали и планируют отправить на орбиту молодые российские ученые, как запланировано должен иметь звездную величину не более?10. И если все удастся, он на некоторое время станет самым ярким объектом на ночном небе, если, конечно, не считать Луны в полнолуние (?12,74).

Абсолютная звездная величина

Денеб – одна из самых больших звезд, известных науке, имеет звездную величину +1,25. Ее диаметр примерно равен диаметру орбиты Земли и больше диаметра Солнца в 110 раз. Расстояние до этого исполина – 1 640 световых лет. Хотя ученые еще спорят по этому вопросу, уж очень это далеко. Большинство звезд, находящихся на таком удалении, можно увидеть только в телескоп. Если бы мы были к этой звезде ближе, то и яркость Денеба на небе была бы куда выше. Тем самым видимая звездная величина зависит как от светимости объекта, так и от расстояния до него. Чтобы можно было сравнить светимость разных звезд между собой, используют абсолютную звездную величину. Для звезд она определяется как видимая звездная величина объекта, если бы он был расположен на расстоянии 10 парсек от наблюдателя. Если расстояние до звезды известно, то абсолютную звездную величину рассчитать несложно.

Абсолютная звездная величина Солнца составляет +4,8 (видимая, напомним, ?26,7). Сириус – самая яркая звезда ночного неба – имеет видимую величину?1,46, но абсолютную всего +1,4. Что, впрочем, неудивительно, ведь бриллиант ночного неба (как называют эту звезду) находится близко от нас: на расстоянии всего 8,6 световых лет. А вот абсолютная звездная величина уже упомянутого Денеба составляет?6,95.

Параллакс

Никогда не задумывались, как ученые определяют расстояние до звезды? Ведь лазерным дальномером это расстояние не измеришь. На самом деле, все просто. В течение года положение звезды на небе изменяется вследствие обращения Земли по орбите вокруг Солнца. Такое изменение называется годичным параллаксом звезды. Чем ближе звезда к нам, тем больше ее смещение на фоне звезд, которые находятся дальше. Но даже у ближайших звезд такое смещение чрезвычайно мало. Невозможность обнаружить параллакс у звезд в свое время была одним из аргументов против гелиоцентрической системы мира. Удалось это сделать только в XIX веке. В нынешнее время для измерения параллаксов, а следовательно и расстояний до звезд, на орбиты выводят специальные космические телескопы. Телескоп Hipparcos Европейского космического агентства (названный в честь того самого Гиппарха, который классифицировал звезды по яркости) позволил измерить параллаксы более 100 тысяч звезд. В декабре 2013 года выведен на орбиту его преемник Gaia.

Параллактическое смещение близких звезд на фоне далёких

Собственно, параллакс (а это не только астрономическое понятие) представляет собой изменение видимого положения объекта относительно удаленного фона (в нашем случае более дальних звезд) в зависимости от положения наблюдателя. Используется он и в геодезии. Имеет значение для фотографии. Измеряется параллакс в угловых секундах (секундах дуги).

Световой год

Мерить расстояния в космическом пространстве в километрах совсем не удобно. К примеру, расстояние до ближайшей к нам звезды Проксима Центавра? 4,01?1013километров (40,1 триллиона километров). Достаточно сложно представить это расстояние. Но если измерить это расстояние в световых годах, единице длины, равной расстоянию, проходимому светом за один год, то получится 4,2 световых года. Свет от этого красного карлика идет к нам примерно 4 года и 3 месяца. Все просто.

Парсек

А вот с другой единицей длины, применяемой в астрономии, не все так просто. Расстояние до звезды Проксима Центавра, измеренное в парсеках, составляет 1,3 единицы. Само слово «парсек» образовано из слов «параллакс» и «секунда» (имеется в виду угловая секунда, равная 1/3600 градуса, вспомните школьный транспортир). Тот самый параллакс, благодаря которому мы можем измерять расстояния до звезд. Парсек (обозначается «пк») ? это расстояние, с которого отрезок длиной в одну астрономическую единицу (радиус земной орбиты), перпендикулярный лучу зрения, виден под углом в одну угловую секунду.

Галактический рукав

Наш Млечный Путь имеет диаметр 100 000 световых лет. Он относится к одному из основных типов галактик. Млечный Путь – это спиральная галактика с перемычкой. Все звезды, которые мы видим на небе невооруженным взглядом, находятся в нашей Галактике. Всего Млечный Путь содержит, по разным оценкам, от 200 до 400 миллиардов звезд. Как же сориентироваться и узнать, где среди этих миллиардов звезд находится Солнце?

Млечный Путь – спиральная галактика, и она имеет спиральные галактические рукава, расположенные в плоскости диска. Галактический рукав – это структурный элемент спиральной галактики. Основное количество звезд, пыли и газа содержится именно в галактических рукавах.

Галактические рукава Млечного Пути

Таких рукавов несколько, но основные это рукав Стрельца, рукав Лебедя, рукав Персея, рукав Центавра и рукав Ориона. Такие названия они получили по имени созвездий, в которых можно наблюдать основной массив рукавов. Рукав Ориона, по сравнению с другими, небольшой. Иногда его даже называют Шпора Ориона. Его длина всего около 11 000 световых лет. Но для нас этот рукав примечателен тем, что Солнце и небольшая Голубая планета, обращающаяся вокруг него и являющаяся нашим домом, находятся именно в нем.

Апоцентр и перицентр

Большинство из известных орбит искусственных спутников и небесных тел эллиптические. А для любой эллиптической орбиты всегда можно указать точку, ближайшую к центральному телу и наиболее удаленную от него. Ближайшая точка называется перицентром, а наиболее удаленная – апоцентром.

Апоцентр (справа) и перицентр (слева)

Но, как правило, вместо слова «центр», после «пери-» или «апо-», подставляют название тела, вокруг которого происходит движение. Так, для орбит искусственных спутников Земли (Гея – на древнегреческом языке) и орбиты Луны применяют термины апогей и перигей. Для окололунной (Луна – Селена) орбиты иногда применяются апоселений и периселений. Ближайшая к Солнцу (Гелиос) точка орбиты нашей планеты или другого небесного тела Солнечной системы – перигелий, дальняя – афелий или апогелий. Для орбит вокруг других звезд (астрон – звезда) – периастр и апоастр.

Астрономическая единица

Перигелий орбиты нашей планеты (ближайшая точка орбиты к Солнцу) составляет 147 098 290 км (0,983 астрономических единиц), афелий – 152 098 232 км (1,017 астрономических единиц). А вот если взять среднее расстояние от Земли до Солнца, то получается удобная единица измерения в космосе. Для тех расстояний, где в километрах мерить уже неудобно, а в световых годах и парсеках еще неудобно. Такая единица измерения называется «астрономической единицей» (обозначается «а. е.») и применяется для определения расстояний между объектами Солнечной системы, внесолнечных систем, а также между компонентами двойных звезд. После нескольких уточнений астрономическая единица признана равной 149597870,7 километрам.

Тем самым Земля удалена от Солнца на расстояние 1 а. е., Нептун, самая далекая от Солнца планета, – на расстояние около 30 а. е. Расстояние от Солнца до самой близкой к нему планеты – Меркурия – всего 0,39 а. е. А в момент следующего великого противостояния Марса и Земли, 27 июля 2018 года, расстояние между планетами сократится до 0,386 а. е.

Предел Роша

В космосе нет ничего постоянного. Просто для изменения привычного нам порядка требуются миллионы лет. Так, если некий наблюдатель через несколько миллионов лет будет наблюдать Марс, то он может не обнаружить у него одного или даже двух его спутников. Как известно, больший из спутников красной планеты – Фобос – приближается к ней на 1,8 метра за столетие. Фобос движется на расстоянии всего около 9 000 км от Марса. Для сравнения, орбиты навигационных спутников находятся на высоте 19 400–23 222 км, геостационарная орбита – 35 786 км, а Луна, естественный спутник нашей планеты, находится от Земли на расстоянии 385 000 км.

Пройдет еще 10–11 миллионов лет, и Фобос перейдет свой предел Роша, в результате чего разрушится. Предел Роша, названный так по имени Эдуарда Роша, впервые рассчитавшего такие пределы для некоторых спутников, – это расстояние от планеты (звезды) до ее спутника, ближе которого спутник разрушается приливными силами. Как было установлено, сила притяжения планеты компенсируется центробежной силой только в центре масс спутника. В других точках спутника такого равенства сил нет, что и является причиной образования приливных сил. В результате действия приливных сил спутник сначала приобретает эллипсоидальную форму, а при прохождении предела Роша разрывается ими. А вот орбита другого спутника красной планеты – Деймоса (высота орбиты около 23 500 км) – с каждым разом все дальше. Рано или поздно он преодолеет притяжение Марса и отправится в самостоятельное странствие по Солнечной системе.

Ланиакея

Сможете ли вы сказать, где во Вселенной находится наша планета? Конечно, планета Земля находится в Солнечной системе, которая, в свою очередь, находится в Рукаве Ориона – небольшом галактическом рукаве Млечного Пути. Ну а дальше? Наша Галактика, ближайшие к нам галактика Андромеды, галактика Треугольника и еще более 50 галактик входят в так называемую Местную группу галактик, которая является составной сверхскопления Девы.

Ланиакея и Млечный путь

А вот уже сверхскопление Девы, называемое также Местное сверхскопление галактик, сверхскопления Гидры-Центавра и Павлина-Индейца, а также Южное сверхскопление образуют сверхскопление галактик, называемое Ланиакея. Оно содержит в себе примерно 100 тысяч галактик. Диаметр Ланиакеи – 500 миллионов световых лет. Для сравнения, диаметр нашей Галактики – всего-то 100 тысяч световых лет. В переводе с гавайского Ланиакея означает «необъятные небеса». Что в целом точно отражает тот факт, что в обозримом будущем долететь до края этих «небес» мы вряд ли сможем.

Ланиакея и соседнее сверхскопление галактик Персея-Рыб

(из Википедии)

Звёздная величина - числовая характеристика объекта на небе, чаще всего звезды, показывающая, сколько света приходит от него в точку, где находится наблюдатель.

Видимая (визуальная)

Современное понятие видимой звёздной величины сделано таким, чтобы оно соответствовало величинам, приписанным звёздам древнегреческим астрономом Гиппархом во II веке до н. э. Гиппарх разделил все звёзды на шесть величин. Самые яркие он назвал звёздами первой величины, самые тусклые — звёздами шестой величины. Промежуточные величины он распределил равномерно между оставшимися звёздами.

Видимая звёздная величина зависит не только от того, сколько света излучает объект, но и от того, на каком расстоянии от наблюдателя он находится. Видимая звёздная величина считается единицей измерения блеска звезды, причём чем блеск больше, тем величина меньше, и наоборот.

В 1856 году Н. Погсон предложил формализацию шкалы звёздных величин. Видимая звёздная величина определяется по формуле:

Где I — световой поток от объекта, C — постоянная.

Поскольку данная шкала относительная, то её нуль-пункт (0 m ) определяют как яркость такой звезды, у которой световой поток равен 10³ квантов /(см²·с·Å) в зелёном свете (шкала UBV) или 10 6 квантов /(см²·с·Å) во всём видимом диапазоне света. Звезда 0 m за пределами земной атмосферы создаёт освещённость в 2,54·10 −6 люкс.

Шкала звёздных величин является логарифмической, поскольку изменение яркости в одинаковое число раз воспринимается как одинаковое (закон Вебера — Фехнера). Кроме того, поскольку Гиппарх решил, что величина тем меньше , чем звезда ярче , то в формуле присутствует знак минус.

Следующие два свойства помогают пользоваться видимыми звёздными величинами на практике:

  1. Увеличению светового потока в 100 раз соответствует уменьшение видимой звёздной величины ровно на 5 единиц.
  2. Уменьшение звёздной величины на одну единицу означает увеличение светового потока в 10 1/2,5 =2,512 раза.

В наши дни видимая звёздная величина используется не только для звёзд, но и для других объектов, например, для Луны и Солнца и планет. Поскольку они могут быть ярче самой яркой звезды, то у них может быть отрицательная видимая звёздная величина.

Видимая звёздная величина зависит от спектральной чувствительности приёмника излучения (глаза, фотоэлектрического детектора, фотопластинки и т. п.)

  • Визуальная звёздная величина (V или m v ) определяется спектром чувствительности человеческого глаза (видимый свет), имеющего максимум чувствительности при длине волны 555 нм. или фотографически с оранжевым фильтром.
  • Фотографическая или «синяя» звёздная величина (B или m p ) определяется фотометрированием изображения звезды на фотопластинке, чувствительной к синим и ультрафиолетовым лучам, или при помощи сурьмяно-цезиевого фотоумножителя с синим фильтром.
  • Ультрафиолетовая звёздная величина (U ) имеет максимум в ультрафиолете при длине волны около 350 нм.

Разности звёздных величин одного объекта в разных диапазонах U−B и B−V являются интегральными показателями цвета объекта, чем они больше, тем более красным является объект.

  • Болометрическая звёздная величина соответствует полной мощности излучения звезды, т. е. мощности, просуммированной по всему спектру излучения. Для её измерения применяется специальное устройство — болометр.

абсолютная

Абсолютная звёздная величина (M ) определяется как видимая звёздная величина объекта, если бы он был расположен на расстоянии 10 парсек от наблюдателя. Абсолютная болометрическая звёздная величина Солнца +4,7. Если известна видимая звёздная величина и расстояние до объекта, можно вычислить абсолютную звёздную величину по формуле:

где d 0 = 10 пк ≈ 32,616 световых лет.

Соответственно, если известны видимая и абсолютная звёздные величины, можно вычислить расстояние по формуле

Абсолютная звёздная величина связана со светимостью следующим соотношением: где и — светимость и абсолютная звёздная величина Солнца.

Звёздные величины некоторых объектов

Объект m
Солнце −26,7
Луна в полнолуние −12,7
Вспышка Иридиума (максимум) −9,5
Сверхновая 1054 года (максимум) −6,0
Венера (максимум) −4,4
Земля (глядя с Солнца) −3,84
Марс (максимум) −3,0
Юпитер (максимум) −2,8
Международная космическая станция (максимум) −2
Меркурий (максимум) −1,9
Галактика Андромеды +3,4
Проксима Центавра +11,1
Самый яркий квазар +12,6
Самые слабые звёзды, наблюдаемые невооружённым глазом От +6 до +7
Самый слабый объект, заснятый в 8-метровый наземный телескоп +27
Самый слабый объект, заснятый в космический телескоп Хаббла +30
Объект Созвездие m
Сириус Большой пёс −1,47
Канопус Киль −0,72
α Центавра Центавр −0,27
Арктур Волопас −0,04
Вега Лира 0,03
Капелла Возничий +0,08
Ригель Орион +0,12
Процион Малый пёс +0,38
Ахернар Эридан +0,46
Бетельгейзе Орион +0,50
Альтаир Орёл +0,75
Альдебаран Телец +0,85
Антарес Скорпион +1,09
Поллукс Близнецы +1,15
Фомальгаут Южная рыба +1,16
Денеб Лебедь +1,25
Регул Лев +1,35

Солнце с разных расстояний

Если в ясную безоблачную ночь поднять голову вверх, то можно увидеть множество звёзд. Так много, что, кажется, и не счесть вовсе. Оказывается, что небесные светила, видимые глазу, всё же посчитаны. Их насчитывается около 6 тыс. Это общее число как для северного, так и для южного полушарий нашей планеты. В идеале мы с вами, находясь, к примеру, в северном полушарии, должны были бы видеть приблизительно половину от их общего числа, а именно где-то 3 тыс. звёзд.

Мириады зимних звёзд

К сожалению, рассмотреть все имеющиеся звёзды практически невозможно, ведь для этого понадобятся условия с идеально прозрачной атмосферой и полное отсутствие любых источников света. Даже если вы окажетесь в чистом поле вдали от городской засветки глубокой зимней ночью. Почему зимой? Да потому, что летние ночи гораздо светлее! Это связано с тем, что солнце недалеко заходит за горизонт. Но даже и в этом случае нашему глазу будет доступно не более 2,5-3 тыс. звёзд. Почему же так?

Всё дело в том, что зрачок человеческого глаза, если его представить в качестве собирает определённое количество света от разных источников. В нашем случае источниками света являются звёзды. Сколько мы их увидим, напрямую зависит от диаметра линзы оптического прибора. Естественно, стекло объектива бинокля или телескопа имеет больший диаметр, чем зрачок глаза. Поэтому и будет собирать больше света. Вследствие этого с помощью астрономических приборов можно увидеть гораздо большее количество звёзд.

Звёздное небо глазами Гиппарха

Конечно, вы замечали, что звёзды отличаются по яркости, или, как говорят астрономы, по видимому блеску. В далёком прошлом люди также обратили на это внимание. Древнегреческий астроном Гиппарх поделил все видимые небесные светила на звёздные величины, имеющие VI классов. Самые яркие из них "заработали" I, а самые невыразительные он охарактеризовал как звёзды VI категории. Остальные были разделены на промежуточные классы.

Впоследствии выяснилось, что разные звёздные величины имеют между собой некую алгоритмическую связь. А искажение яркости в равное количество раз нашим глазом воспринимается как удаление на одинаковое расстояние. Таким образом, стало известно, что сияние звезды I категории ярче сияния II примерно в 2,5 раза.

Во столько же раз звезда II класса ярче III, а небесное светило III, соответственно, - IV. В итоге разница между свечением звёзд I и VI величин отличается в 100 раз. Таким образом, небесные светила VII категории находятся за порогом человеческого зрения. Немаловажно знать, что звёздная величина — это не размер звезды, а её видимый блеск.

Что является абсолютной звёздной величиной?

Звёздные величины бывают не только видимыми, но и абсолютными. Этот термин применяют, когда необходимо сравнить между собой две звезды по их светимости. Чтобы это сделать, каждую звезду относят на условно-стандартное расстояние в 10 парсек. Иными словами, это величина звёздного объекта, которую он имел бы, если находился на расстоянии 10 ПК от наблюдателя.

К примеру, звёздная величина нашего солнца -26,7. А вот с расстояния в 10 ПК наша звезда была бы едва заметным глазу объектом пятой величины. Отсюда следует: чем выше светимость небесного объекта, или, как ещё говорят, энергия, которую звезда излучает в единицу времени, тем больше вероятность, что абсолютная звёздная величина объекта примет отрицательное значение. И наоборот: чем меньше светимость, тем выше будут положительные значения объекта.

Самые яркие звёзды

Все звёзды имеют различный видимый блеск. Одни немного ярче первой величины, вторые - намного слабее. Ввиду этого были введены дробные величины. К примеру, если видимая звёздная величина по своему блеску находится где-то между I и II категорией, то её принято считать звездой 1,5 класса. Также существуют звёзды с величинами 2,3…4,7…и т. д. Например, Процион, входящий в экваториальное созвездие Малого Пса, лучше всего виден по всей России в январе или феврале. Её видимый блеск - 0,4.

Примечательно, что I звёздная величина кратна 0. Только одна звезда практически точно соответствует ей — это Вега, ярчайшее светило в Её блеск составляет примерно 0,03 звёздной величины. Однако есть светила, которые ярче её, но их звёздная величина носит отрицательный характер. Например, Сириус, который можно наблюдать сразу в двух полушариях. Его светимость - -1,5 звёздной величины.

Отрицательные звёздные величины присвоены не только звёздам, но и другим небесным объектам: Солнцу, Луне, некоторым планетам, кометам и космическим станциям. Однако существуют звёзды, которые могут менять свой блеск. Среди них есть множество звёзд пульсирующих, с переменными амплитудами блеска, но встречаются и такие, у которых можно наблюдать несколько пульсаций одновременно.

Измерение звёздных величин

В астрономии практически все расстояния измеряет геометрическая шкала звёздных величин. Фотометрический способ измерений используется для далёких расстояний, а также если нужно сравнить светимость объекта с его видимым блеском. В основном расстояние к ближайшим звёздам определяют по их годичному параллаксу — большой полуоси эллипса. Запущенные в будущем космические спутники увеличат визуальную точность изображений не менее чем в несколько раз. К сожалению, пока для расстояний более чем 50-100 ПК применяют другие методы.