Уравнение равновесия пространственной произвольной системы сил. Условия (уравнения) равновесия пространственной произвольной системы сил. Условия равновесия пространственной системы параллельных сил

Рассмотрим произвольную пространственную систему сил, дей­ствующих на твердое тело. Приведем эту систему сил к заданному цен­тру и остановимся на том случае, когда главный вектор и главный мо­мент данной системы сил равны нулю, т.е.

(1) Такая система сил эквивалентна нулю, т.е. уравновешена. Сле­довательно, равенства (1) являются достаточными условиями равнове­сия. Но эти условия также и необходимы, т.е. если система сил нахо­дится в равновесии, то равенства (1) также выполняются.В самом деле, если бы система находилась в равновесии, но, например то данная система привилась бы к равнодействующей в центре приведения и равновесия не было бы. Если бы но Мо =**О, данная система привилась бы к паре и равновесия также не было пара не могут уравновесить друг друга. Таким образом, мы доказали, что для равновесия произвольной пространственной системы сил необ­ходимо и достаточно, чтобы главный вектор и главный момент этой системы относительно произвольно выбранного центра приведенияравнялись нулю. Условия (1) называются условиями равновесия в векторной форме. Для получения более удобной для практических целей аналити­ческой формы условий равновесия спроецируем равенства (1) на оси декартовой системы координат. В результате получим:

(2)условия равновесия системы параллельных сил в пространстве Для равновесия произвольной пространственной системы сил необходимо и достаточно, чтобы сумма проекций всех сил на оси ко­ординат х, у и z, а также сумма моментов всех сил относительно этих же осей равнялись нулю.Пусть на твердое тело действует пространственная система па­раллельных сил. Так как выбор осей произволен, можно выбрать систе­му координат так, чтобы одна из осей была параллельна силам, а две

другие им перпендикулярны (рис. 1.38). При таком выборе координатных осей проекции каждой из сил на оси х и у и их моменты относительно оси z всегда будут равны ну­лю. Это означает,что

Эти равенства тождественно выполняются, независимо от того, находится ли данная система сил в равновесии или нет, т.е. перестают быть условиями рав­новесия. Поэтому в качестве условий равновесия останутся следующие:

Таким образом, для равновесия системы параллельных сил в пространстве необходимо и достаточно, чтобы сумма проекций всех сил на ось, параллельную этим силам, равнялась нулю и чтобы сулима их моментов относительно каждой из двух координатных осей, перпен­дикулярных силам, также равнялись нулю.

17,Теорема об эквивалентности 2ух пар сил а пространстве.

Приведение силы к заданному центру (метод Пуансо) – силу можно перенести параллельно самой себе в любую точку плоскости, если добавить соответствующую пару сил, момент которой равен моменту этой силы относительно рассматриваемой точки. Добавим к системе в точке A две силы, равные по величине между собой и величине заданной силы, направленные по одной прямой в противоположные стороны и параллельные заданной силе: Кинематическое состояние не изменилось (аксиома о присоединении). Исходная сила и одна из добавленных сил противоположно направленная образуют пару сил. Момент этой пары численно равен моменту исходной силы относительно центра приведения. Во многих случаях пару сил удобно изображать дуговой стрелкой. Приведение плоской произвольной системы сил к заданному центру – выбираем произвольную точку на плоскости и каждую из сил переносим по методу Пуансо в эту точку. Вместо исходной произвольной системы получим сходящуюся систему сил и систему пар. Сходящаяся система сил приводится к одной силе, приложенной в центре приведения, которая ранее называлась равнодействующей, но теперь эта сила не заменяет исходную систему сил, поскольку после приведения возникла система пар. Система пар приводится к одной паре (теорема о сложении пар), момент которой равен алгебраической сумме моментов исходных сил относительно центра приведения. В общем случае плоская произвольная система сил приводится к одной силе, называемой главным вектором и к паре с моментом, равным главному моменту всех сил системы относительно центра приведения: - главный вектор, - главный момент. A. A. Условием равновесия плоской произвольной системы сил является одновременное обращение главного вектора и главного момента системы в ноль: Уравнения равновесия (I форма) получаются в виде системы трех уравнений из условий равновесия с использованием выражений для проекций главного вектора: Существуют еще две формы уравнений Равновесия (II и III формы)

17.

27-28.зависимость между главными моментами сил относительно двух произвольно выбранных центров приведения. Инварианты системы сил

Пусть пространственная система сия приведена к центру О, т.е.

где Главный момент образует с направлением главного вектора не­который Угол а (рис 1.32)

Возьмем теперь новый центр приведения О1 и приведем все си­лы к этому центру. В результате снова получим главный вектор, равный главному вектору R, и новый главный момент, определяемый формулой где pк - радиус-вектор точки приложения силы Fk, проведенный из но­вого центра приведения О1 (см. рис. 1.32).Главный момент Мо1 относительно нового центра приведенияизменился и теперь образует с направлением главного вектора R неко­торый угол а1. Установим связь между моментами Мо и Мо1 .Из рисунка 1.32 видно, что (3) Подставляя (3) в равенство (2), получим (4)Далее, раскрывая скобки в правой части равенства (4) и вынося общий множитель О1О за знак суммы, имеем

( - проекции главного момента относительно точки О на координатные оси).

Приведение силы к заданному центру.

Чтобы привести силу, приложенную в какой-либо точке твердого тела к заданному центру необходимо:

1)Перенести силу параллельно самой себе в заданный центр не изменяя модуля силы.

2)В заданном центре приложить пару сил, векторный момент которой равен векторному моменту переносимой силы относительно нового центра. Эту пару сил называют присоединенной парой.

Действие силы на твердое тело не изменяется при переносе ее параллельно самой себе в другую точку твердого тела, если добавить пару сил.

33 32


34.Для плоской системы параллельных сил можно составить два уравнения равновесия.если силы параллельны оси У,то уравнения равновесия имеют вид.

Второе уравнение можно составить относительно любой точки.

35 для равновесия совершенно свободного тела, на которое действует пространственная произвольная система сил, необходимо и достаточно, чтобы выполнялись шесть уравнений равновесия. Если тело закреплено в одной точке, то оно имеет три степени свободы. Двигаться поступательно такое тело не может, а может только вращаться вокруг любой оси, т. е. вокруг осей координат. Для того чтобы такое тело находилось в равновесии, нужно, чтобы оно не вращалось, а для этого достаточно потребовать равенства нулю трех уравнений моментов

Итак, для того чтобы абсолютно твердое тело с одной закрепленной точкой, на которое действует произвольная пространственная система сил, находилось в равновесии, необходимо и достаточно, чтобы суммы моментов всех сил относительно трех взаимно перпендикулярных осей равнялись нулю.

Три других уравнения служат для ля определения составляющих реакции шарнира в точке крепления Nx, Ny, Nz

37. Тело, имеющее две закрепленные точки, имеет одну степень свободы. Оно может вращаться только вокруг оси, проходящей через эти две закрепленные точки.Равновесие будет в том случае, если тело не будет вращаться вокруг этой оси. Поэтому для равновесия достаточно потребовать, чтобы сумма моментов всех сил, действующих на тело, относительно оси, проходящей через две закрепленные точки, равнялась нулю: ∑Mxx(Fi)=0

38/Система тел представляет собой несколько тел, соединенных между собой каким-то образом. Силы, действующие на тела сис­темы, делят на внешние и внутренние. Внутренними называют силы взаимодействия между телами одной и той же системы, а внешними называют силы, с которыми на тела данной систе­мы действуют тела, не входящие в нее.

Если система тел находится в равновесии, то рассматриваем равновесие каждого тела в отдельности, учитывая внутренние силы взаимодействия между телами. Если задана плоская произвольная система N тел, то для этой системы можно составить 3N уравне­ний равновесия. При решении задач на равновесие системы тел можно также рассмат­ривать равновесие как системы тел в целом, так и для любых со­четаний тел. В случае рассмотрения равновесия системы в целом внутренние силы взаимодействия между телами не учитываются на основании аксиомы о равенстве сил действия и противодействия. Таким образом существует 2 типа нахождения равновесия систем тел…1сп В первую очередь рассматриваем всю конструкцию.а затем отсоединяем от этой системы какое-либо тело и рассм. Равновесие в нем. 2сп.Расчленяем сис-му на отдельные тела и сост.уравнение равновесия для каждого тела.

Статически определимые системы-это системы,в которых число неизвестных величин не превышает числанезависимых уравнений равновесия для данной системы сил.

Статически неопр. Системы-это системы в которых число неизвестных величин превышает число независимых уравнений равновесия для данной системы сил Kcт=R-Y где R-число реакций. Y-число независимых уравнений

41.После выхода тела из положения равновесия сила трения по­коя уменьшается и при движении ее называют силой трения скольжения, т. е. коэффициент трения скольжения несколько меньше коэффициента трения покоя. В технических расчетах принимают, что эти коэффициенты равны.С увеличением ско­рости движения для большинства материалов коэффициент тре­ния скольжения уменьшается. Коэффициент трения скольжения определяют экспериментально.

Сила трения скольжения направлена противоположно воз­можному движению тела.

Сила трения не зависит от площади соприкасающихся по­верхностей.

Максимальная сила трения пропорциональна нормальному давлению. Под нормальным давлением понимают полное давле­ние на всю площадь соприкосновения трущихся поверхностей: Fmax=fN

43.При наличии трения полная реакция шероховатой поверхно­сти отклонена от нормали к поверхности на некоторый угол <р, который в случае выхода тела из равновесия достигает максимума и называется углом трения tgφ=Fmax/N Fmax=fN тогда tgφ=f

Тангенс угла трения равен коэффициенту трения.

Конусом трения называют конус, описанный полной реакци­ей R вокруг направления нормальной реакции. Если коэффи­циент трения f во всех направлениях одинаков, то конус тре­ния будет круговым

Для равновесия тела на шероховатой поверхности необходимо и достаточно, чтобы равнодействующая активных сил находилась внутри конуса трения или проходила по образующей конуса

30.Модуль главного вектора Ro=√Rx^2+Ry^2 где Rx= ƩFkx Ry= ƩFky (Rx,Ry проекции главного вектора на соответствующие оси координат)

Углы образованные главным вектором с соответствующей осью координат Сos(x^Ro)=Rx/Ro Сos(y^Ro)=Ry/Ro

Модуль главного момента относительно выбранного центра приведения О Mo√Mox^2+Moy^2 где Mox=∑Mx(Fk) Moy=∑My(Fk) Mox Moy-проекции главного момента относительно точки О на координатные оси)

Углы образованные главным моментом с соотв.осями координат Сos(x^Mo)=Mox/Mo Сos(y^Mo)=Moy/Mo

Если Ro не=0 Mo=0 система сил может быть заменена одной силой

Ro=0 Mo не=0 система сил заменяется парой сил

Roне=0 Mo не=0 но Ro перпендикулярноMo заменяется одной силой не проходящей через центр приведения

31.Плоская система сил. Все силы этой системы лежат в одной плоскости. Пусть, например, это будет плоскость XAY, где A произвольный центр приведения. Силы этой системы на ось AZ не проектируются и моментов относительно осей AX и AY не создают, так как лежат в плоскости XAY (п. 13). При этом выполняется равенство


Учитывая это, получим условия равновесия для плоской системы сил:

Таким образом, для равновесия твердого тела под действием плоской системы сил необходимо и достаточно, чтобы равнялись нулю две суммы проекций сил на оси координат и сумма алгебраических моментов всех сил относительно любой точки плоскости.

39.распределенными называют силы, действующие на все точки данного объема или данной части поверхности, или линии. Рас­пределенные силы характеризуются интенсивностьюq , т. е. силой, приходящейся на единицу объема, поверхности или длины ли­нии. Распределенные силы обычно заменяют сосредоточенными.

Если распределенные силы действуют в плоскости на прямую линию, то их заменяют сосредоточенной силой следующим об­разом.

Равномерно распределенную нагрузку интенсивностью q за­меняют сосредоточенной силой Q =qL которая приложена в середине участка. Равномерно распределенной нагрузкой назы­вают силы, имеющие одинаковые величины и направления на заданном участке тела.

Если распределенные силы изменяются по линейному закону

(по треугольнику), то сосредоточенная сила Q = qmaxL/2- прило­жена в центре тяжести треугольника, расположенного на рас­стоянии - от его основания……………….

44.Трение качения - сопротивление движению, возникающее при перекатывании тел друг по другу. Проявляется, например, между элементами подшипников качения, между шиной колеса автомобиля и дорожным полотном. Как правило, величина трения качения гораздо меньше величины трения скольжения, и потому качение является распространенным видом движения в технике.

Трение качения возникает на границе двух тел, и поэтому оно классифицируется как вид внешнего трения.

45.трение верчения. Предположим, что на горизонтальной плоскости лежит тяжелый шар, обозначим центр шара через О, а точку касания шара с плоскостью через С. Вращение шара вокруг прямой СО и называется верчением. Опыт показывает, что если момент пары, которая должна привести шар в верчение, очень мал, то шар в верчение не придет. Отсюда следует, что действие движущей пары парализуется какойто другой парой, от наличия которой и зависит трение верчения.

Один из методов расчета момента трения подшипника качения заключается в том, что момент трения делится на, так называемый, независимый от нагрузки момент M0 и зависимый от нагрузки момент M1, которые затем складываются и дают суммарный момент:

46две параллельные и направленные в одну сторону силы приводятся к одной силе – равнодействующей, приложенной в точке, делящей прямую на расстояния, обратно пропорциональные величинам сил. Последовательно складывая попарно параллельные силы приходим также к одной силе – равнодействующей R: Поскольку силу можно переносить по линии ее действия, то точка приложения силы (равнодействующей) по существу не определена. Если все силы повернуть на один и тот же угол и вновь провести сложение сил, то получаем другое направление линии действия равнодействующей. Точка пересечения этих двух линий действия равнодействующих может рассматриваться, как точка приложения равнодействующей, не изменяющей своего положения при одновременном повороте всех сил на один и тот же угол. Такая точка называется центром параллельных сил. Центр параллельных сил –точка приложения равнодействующей, не изменяющей своего положения при одновременном повороте всех сил на один и тот же угол

47Радиус-вектором точки называется вектор, начало которого совпадает с началом системы координат, а конец - с данной точкой.

Таким образом, особенностью радиус-вектора, отличающего его от всех других векторов, является то, что его начало всегда находится в точке начала координат (рис. 17).

Центр параллельных сил, точка, через которую проходит линия действия равнодействующей системы параллельных сил Fk при любом повороте всех этих сил около их точек приложения в одну и ту же сторону и на один и тот же угол. Координаты Центр параллельных сил определяются формулами:

где xk, yk, zk - координаты точек приложения сил.

48 Центр тяжести твердого тела – точка, неизменно связанная с этим телом, через которую проходит линия действия равнодействующей сил тяжести частиц тела при любом положении тела в пространстве. При этом поле тяжести считается однородным, т.е. силы тяжести частиц тела параллельны друг другу и сохраняют постоянную величину при любых поворотах тела. Координаты центра тяжести:

; ; , где Р=åр k , x k ,y k ,z k – координаты точек приложения сил тяжести р k . Центр тяжести – геометрическая точка и может лежать и вне пределов тела (например, кольцо). Центр тяжести плоской фигуры:

DF k – элементарная площадка, F – площадь фигуры. Если площадь нельзя разбить на несколько конечных частей, то . Если однородное тело имеет ось симметрии, то центр тяжести тела находится на этой оси.

49 Решение задач на определение положения (координат) центра тяжести однородной пластинки, системы тел находящихся на плоскости или пространстве сводится к составлению уравнений и дальнейшей подставки в него известных численных данных и вычисление результата:

Т.е. необходимо разбить систему на составляющие, найти положения центра тяжести этих составных элементов. Вычислить массу составных частей, выразив ее через удельную плотность – линейную, объемную или поверхностную, в зависимости от типа представленной системы. В конце решения удельная плотность сократиться, так что не стоит ее смущаться вводить (как правило она не дана, но в тексте задачи указывается, что пластина, стержни, плита однородны). Из особенностей этой задачи следует отметить две вещи: 1) определение центра тяжести у составляющей прямоугольной, квадратной формы или стержня, окружности не составляет труда – центр тяжести таких фигур находится по центру.

50. кругового сектора: ; Треугольник. Разбиением треугольника на тонкие линии,

параллельные каждой из его сторон, определяют, что поскольку центр

тяжести каждой линии лежит на ее геометрическом центре (в центре

симметрии), то центр тяжести треугольника лежит на пересечении его

медиан. Точка пересечения медиан делит их в соотношении (2:1).

Круговой сектор (рисунок 54). Центр тяжести лежит на оси

симметрии. Разбиением кругового сектора на элементарные треугольники

определяют дугу, образованную центрами тяжести треугольников. Радиус

дуги равен 2/3 радиуса сектора. Таким образом, координата центра

тяжести кругового сектора определяется

выражением xC = sin α .

51Полушар. Центр тяжести лежит на оси симметрии на расстоянии

3/8 от основания.

Пирамида (конус) (рисунок 55).

Центр тяжести лежит на линии,

соединяющей вершину с центром

тяжести основания на расстоянии ¾ от

Дуга окружности Центр тяжести лежит на оси симметрии и имеет

координаты xC = sin α ; уС = 0 .

Кинематика

1Кинематика , раздел теоретической механики, изучает движение материальных тел не интересуясь причинами, вызывающих или изменяющих это движение. Для нее важны лишь физическая обоснованность и математическая строгость в рамках принятых моделей Задачи кинематики Задать движение материальной точки (системы)- это значит дать способ определения положения точки (всех точек, образующих систему) в любой момент времени.
Задачи кинематики состоят в разработке способов задания движения точки (системы) и методов определения скорости, ускорения точки и других кинематических величин точек, составляющих механическую систему. траектория точки

Задать движение точки означает задать ее положение в каждый момент времени. Положение это должно определяться, как уже отмечалось, в какой-либо системе координат. Однако для этого не обязательно всегда задавать сами координаты; можно использовать величины, так или иначе с ними связанные. Ниже описаны три основных способа задания движения точки.

1. Естественный способ. Этим способом пользуются, если известна траектория движения точки. Траекторией называется совокупность точек пространства, через которые проходит движущаяся материальная частица. Это линия, которую она вычерчивает в пространстве. При естественном способе необходимо задать (рис. 1):

а) траекторию движения (относительно какой-либо системы координат);

б) произвольную точку на ней нуль, от которого отсчитывают расстояние S до движущейся частицы вдоль траектории;

в) положительное направление отсчета S (при смещении точки М в противоположном направлении S отрицательно);

г) начало отсчета времени t;

д) функцию S(t), которая называется законом движения**) точки.

2. Координатный способ. Это наиболее универсальный и исчерпывающий способ описания движения. Он предполагает задание:

а) системы координат (не обязательно декартовой) q1, q2, q3;

б) начало отсчета времени t;

в) закона движения точки, т.е. функций q1(t), q2(t), q3(t).

Говоря о координатах точки, мы всегда будем иметь в виду (если не оговорено противное) ее декартовы координаты.

3. Векторный способ. Положение точки в пространстве может быть определено также и радиус-вектором, проведенным из некоторого начала в данную точку (рис. 2). В этом случае для описания движения необходимо задать:

а) начало отсчета радиус-вектора r;

б) начало отсчета времени t;

в) закон движения точки r(t).

Поскольку задание одной векторной величины r эквивалентно заданию трех ее проекций x, y, z на оси координат, от векторного способа легко перейти к координатному. Если ввести единичные векторы i, j, k (i = j = k = 1), направленные соответственно вдоль осей x, y и z (рис. 2), то, очевидно, закон движения может быть представлен в виде*)

r(t) = x(t)i +y(t)j+z(t)k. (1)

Преимущество векторной формы записи перед координатной в компактности (вместо трех величин оперируют с одной) и часто в большей наглядности.

Пример. На неподвижную проволочную полуокружность надето маленькое колечко М, через которое проходит еще прямолинейный прут АВ (рис. 3), равномерно вращающийся вокруг точки А (= t, где =const). Найти законы движения колечка М вдоль стержня АВ и относительно полуокружности.

Для решения первой части задачи воспользуемся координатным способом, направив ось х декартовой системы вдоль стержня и выбрав ее начало в точке А. Поскольку вписанный АМС прямой (как опирающийся на диаметр),

x(t) = AM = 2Rcos = 2Rcoswt,

где R радиус полуокружности. Полученный закон движения называется гармоническим колебанием (колебание это будет продолжаться, очевидно, лишь до того момента, пока колечко не дойдет до точки А).

Вторую часть задачи будем решать, используя естественный способ. Выберем положительное направление отсчета расстояния вдоль траектории (полуокружности АС) против часовой стрелки (рис. 3), а нуль совпадающим с точкой С. Тогда длина дуги СМ как функция времени даст закон движения точки М

S(t) = R2 = 2R t,

т.е. колечко будет равномерно двигаться по окружности радиусом R с угловой скоростью 2 . Как явствует из проведенного рассмотрения,

нуль отсчета времени в обоих случаях соответствовал моменту, когда колечко находилось в точке С.

2.Векторный способ задания движения точки

Скорость точки направлена по касательной к траектории (рис. 2.1) и вычисляется, согласно (1.2), по формуле

20. Условие равновесия пространственной системы сил:

21. Теорема о 3-х непараллельных силах: Линии действия трёх непараллельных взаимно уравновешивающихся сил, лежащих в одной плоскости, пересекаются в одной точке.

22. Статически определимые задачи – это задачи, которые можно решать методами статики твёрдого тела, т.е. задачи, в которых число неизвестных не превышает числа уравнений равновесия сил.

Статически не определимые – это системы, в которых число неизвестных величин превышает число независимых уравнений равновесия для данной системы сил

23. Уравнения равновесия плоской системы параллельных сил:

AB не параллельно F i

24. Конус и угол трения: Предельное положение активных сил, под действием которых может иметь место равенство, описывает конус трения c углом (φ).

Если активная сила проходит вне этого конуса, то тогда равновесие невозможно.

Угол φ называют углом трения.

25. Указать размерность коэффициентов трения: коэффициенты трения покоя и трения скольжения-безразмерные величины, коэффициенты трения качения и трения верчения имеют размерность длины(мм,см,м).м

26. Основные допущения, принимаемые при расчёте плоских статически опред.ферм: -стержни фермы считают невесомыми; -крепления стержней в узлах фермы-шарнирные; -внешняя нагрузка накладывается только в узлах фермы; -стержень попадает под связь.

27. Какая связь между стержнями и узлами статически определимой фермы?

S=2n-3 –простая статически определимая ферма, S-количество стержней, n-количество узлов,

если S<2n-3 –не жесткая ферма, равновесие возможно, если внешние силы будут одинаково соотноситься

S>2n-3 – статически не определимая ферма, имеет лишние связи, +расчёт деформации

28. Статически определимая ферма должна удовлетворять условию: S=2n-3; S-количество стержней, n-количество узлов.

29. Метод вырезания узлов: Этот метод состоит в том, что мысленно вырезают узлы фермы, прикладывают к ним соответствующие внешние силы и реакции стержней и составляют уравнения равновесия сил, приложенных к каждому узлу. Условно предполагают, что все стрежни растянуты(реакции стержней направлены от узлов).

30. Метод Риттера: Проводим секущую плоскость, рассекающую ферму на 2 части. Сечение должно начинаться и заканчиваться за пределами фермы. В качестве объекта равновесия можно выбирать любую часть. Сечение проходит по стержням, а не по узлам. Силы, приложенные к объекту равновесия, образуют произвольную систему сил, для которой можно составить 3 уравнения равновесия. Поэтому сечение проводим так, чтобы в него попало не более 3 стержней, усилия в которых неизвестны.



Особенностью метода Риттера является выбор формы уравнения таким образом, чтобы в каждое уравнение равновесия входила одна неизвестная величина. Для этого определяем положения точек Риттера, как точек пересечения линий действия двух неизвестных усилий и записываем уравнения моментов отн. этих точек.

Если точка Риттера лежит в бесконечности, то в качестве уравнения равновесия составляем уравнения проекций на ось, перпендикулярную этим стержням.

31. Точка Риттера- точка пересечения линий действия двух неизвестных усилий. Если точка Риттера лежит в бесконечности, то в качестве уравнения равновесия составляем уравнения проекций на ось, перпендикулярную этим стержням.

32. Центр тяжести объемной фигуры:

33. Центр тяжести плоской фигуры:

34. Центр тяжести стержневой конструкции:

35. Центр тяжести дуги:

36. Центр тяжести кругового сектора:

37. Центр тяжести конуса:

38. Центр тяжести полушара:

39. Метод отрицательных величин: Если твёрд.тело имеет полости, т.е. полости из которых вынута их масса, то мы мысленно заполняем эти полости до сплошного тела, и определяем центр тяжести фигуры, взяв вес, объём, площадь полостей со знаком «-».

40. 1-й инвариант: 1-м инвариантом системы сил называют главные вектор системы сил. Главный вектор системы сил не зависит от центра приведения R=∑ F i

41. 2-й инвариант: Скалярное произведение главного вектора на главный момент системы сил для любого центра приведения есть величина постоянная.

42. В каком случае система сил приводится к силовому винту? В случае, если главный вектор системы сил и её главный момент относительно центра приведения не равны нулю и не перпендикулярны между собой, задан. систему сил можно привести к силовому винту.

43. Уравнение центральной винтовой оси:

44. M x - yR z + zR y = pR x ,
M y - zR x + xR z = pR y ,
M z - xR y + yR x = pR z

45. Момент пары сил как вектор- этот вектор перпендикулярен плоскости действия пары и направлен в сторону, откуда видно вращение пары против хода часовой стрелки. По модулю векторный момент равен произведению одной из сил пары на плечо пары. Векторный момент пары явл. свободным вектором и может быть приложен к любой точке твердого тела.

46. Принцип освобождаемости от связей: Если связи отбрасываются, то их необходимо заменить силами реакций от связи.

47. Веревочный многоугольник- это построение графостатики, которым можно пользоваться для определения линия действия равнодействующей плоской системы сил для нахождения реакций опор.

48. Какая взаимосвязь между верёвочным и силовым многоугольником: Для нахождения неизвестных сил графически в силовом многоугольнике используем дополнительную точку О(полюс), в веревочном многоугольнике находим равнодействующую, перемещая которую в силовой многоугольник находим неизвестные силы

49. Условие равновесия систем пар сил: Для равновесия пар сил действующих на твердое тело необходимо и достаточно чтобы момент эквивалентных пар сил был равен нулю. Следствие: Чтобы уравновесить пару сил необходимо приложить уравновешивающую пару, т.е. пару сил можно уравновесить другой парой сил с равными модулями и противоположно направленными моментами.

Кинематика

1. Все способы задания движения точки:

естественный способ

координатный

радиус-векторный.

2. Как найти уравнение траектории движения точки при координатном способе задания её движения? Для того, чтобы получить уравнение траектории движение материальной точки, при координатном способе задания необходимо исключить параметр t из законов движения.

3. Ускорение точки при координ. способе задания движения:

над иксом 2 точки

над y 2 точки

4. Ускорение точки при векторном способе задания движения:

5. Ускорение точки при естественном способе задания движения:

= = * +v* ; a= + ; * ; v* .

6. Чему равно и как оно направлено нормальное ускорение – направлено по радиусу к центру,

Если система сил находится в равновесии, то ее главный вектор и главный момент равны нулю:

Эти векторные равенства приводят к следующим шести скалярным равенствам:

которые называются условиями равновесия пространственной произвольной системы сил.

Первые три условия выражают равенство нулю главного вектора, следующие три - равенство нулю главного момента системы сил.

В этих условиях равновесия должны учитываться все действующие силы - как активные (задаваемые), так и реакции связей. Последние заранее неизвестны, и условия равновесия становятся уравнениями для определения этих неизвестных - уравнениями равновесия.

Поскольку максимальное число уравнений равно шести, то в задаче на равновесие тела под действием произвольной пространственной систе-мы сил можно определить шесть неизвестных реакций. При большем количестве неизвестных задача становится статически неопределенной.

И еще одно замечание. Если главный вектор и главный момент относительно некоторого центра О равны нулю, то они будут равны нулю относительно любого другого центра. Это прямо следует из материала о перемене центра приведения (доказать самостоятельно). Следовательно, если условия равновесия тела выполняются в одной системе координат, то они будут выполняться и в любой другой неподвижной системе координат. Иными словами, выбор координатных осей при составлении уравнений равновесия совершенно произволен.

Прямоугольная плита (рис. 51, а) весом удерживается в горизонтальном положении сферическим шарниром О, подшипником А и тросом BE, причем точки находятся на одной вертикали. В точке D к плите приложена сила , перпендикулярная стороне OD и наклоненная к плоскости плиты под углом 45°. Определить натяжение троса и реакции опор в точках Он А, если и .

Для решения задачи рассматриваем равновесие плиты. К активным силам Р, G добавляем реакции связей - составляющие реакции сферического шарнира, реакции , подшипника, реакцию троса. Одновременно вводим координатные оси Oxyz (рис. 51, б). Видно, что полученная совокупность сил образует произвольную пространственную систему, в которой силы неизвестны.

Для определения неизвестных составляем уравнения равновесия.

Начинаем с уравнения проекций сил на ось :

Поясним определение проекции вычисление осуществляется в два приема- вначале определяется проекция силы Т на плоскость , далее, проектируя на осъ х (удобнее на ось , параллельную ), находим (см. рис. 51,б):

Этим способом двойного проектирования удобно пользоваться, когда линия действия силы и ось не пересекаются. Далее составляем:

Уравнение моментов сил относительно оси имеет вид:

Моменты сил в уравнении отсутствуют, так как эти силы либо пересекают ось х(), либо ей параллельны . В обоих этих случаях момент силы относительно оси равен нулю (см. с. 41).

Вычисление момента силы часто облегчается, если силу разложить подходящим образом на составляющие и воспользоваться теоремой Вариньона. В данном случае это удобно сделать для силы . Разлагая ее на горизонтальную и вертикальную составляющие, можем написать.

Необходимые и достаточные условия равновесия любой системы сил выражаются равенствами (см. § 13). Но векторы R и равны только тогда, когда т. е. когда действующие силы, согласно формулам (49) и (50), будут удовлетворять условиям:

Таким образом, для равновесия произвольной пространственной системы сил необходимо и достаточно, чтобы суммы проекций всех сил на каждую из трех координатных осей и суммы их моментов относительно этих осей были равны нулю.

Равенства (51) выражают одновременно условия равновесия твердого тела, находящегося под действием любой пространственной системы сил.

Если на тело кроме сил действует еще пара, заданная ее моментом , то при этом вид первых трех из условий (51) не изменится (сумма проекций сил пары на любую ось равна нулю), а последние три условия примут вид:

Случай параллельных сил. В случае, когда все действующие на тело силы параллельны друг другу, можно выбрать координатные оси так, что ось будет параллельна силам (рис. 96). Тогда проекции каждой из сил на оси и их моменты относительно оси z будут равны нулю и система (51) даст три условия равновесия:

Остальные равенства обратятся при этом в тождества вида

Следовательно, для равновесия пространственной системы параллельных сил необходимо и достаточно, чтобы сумма проекций всех сил на ось, параллельную силам, и суммы их моментов относительно двух других координатных осей были равны нулю.

Решение задач. Порядок решения задач здесь остается тем же, что и в случае плоской систсмьгсил. Установив, равновесие какого тела (объекта) рассматривается, надо изобразить все действующие на него внешние силы (и заданные, и реакции связей) и составить условия равновесия этих сил. Из полученных уравнений и определяются искомые величины.

Для получения более простых систем уравнений рекомендуется оси проводить так, чтобы они пересекали больше неизвестных сил или были им перпендикулярны (если это только излишне не усложняет вычисления проекций и моментов других сил).

Новым элементом в составлении уравнений является вычисление моментов сил относительно координатных осей.

В случаях, когда из общего чертежа трудно усмотреть, чему равен момент данной силы относительно какой-нибудь оси, рекомендуется изобразить на вспомогательном чертеже проекцию рассматриваемого тела (вместе с силой) на плоскость, перпендикулярную этой оси.

В тех случаях, когда при вычислении момента возникают затруднения в определении проекции силы на соответствующую плоскость или плеча этой проекции, рекомендуется разложить силу на две взаимно перпендикулярные составляющие (из которых одна параллельна какой-нибудь координатной оси), а затем воспользоваться теоремой Вариньона (см. задачу 36). Кроме того, можно вычислять моменты аналитически по формулам (47), как, например, в задаче 37.

Задача 39. На прямоугольной плите со сторонами а и b лежит груз. Центр тяжести плиты вместе с грузом находится в точке D с координатами (рис, 97). Один из рабочих удерживает плиту за угол А. В каких точках В я Е должны поддерживать плиту двое других рабочих, чтобы силы, прикладываемые каждым из удерживающих плиту, были одинаковы.

Решение. Рассматриваем равновесие плиты, которая является свободным телом, находящимся в равновесии под действием четырех параллельных сил где Р - сила тяжести. Составляем для этих сил условия равновесия (53), считая плиту горизонтальной и проводя оси так, как показано на рис. 97. Получим:

По условиям задачи должно быть Тогда из последнего уравнения Подставляя это значение Р в первые два уравнения, найдем окончательно

Решение возможно, когда При а при будет Когда точка D в центре плиты,

Задача 40. На горизонтальный вал, лежащий в подшипниках А и В (рис. 98) насажены перпендикулярно оси вала шкив радиусом см и барабан радиусом . Вал приводится во вращение ремнем, накинутым на шкив; при этом равномерно поднимается груз весом , привязанный к веревке, которая наматывается на барабан. Пренебрегая весом вала, барабана и шкива, определить реакции подшипников А и В и натяжение ведущей ветви ремня, если известно, что оно вдвое больше иатяжения ведомой ветви. Дано: см, см,

Решение. В рассматриваемой задаче при равномерном вращении вала действующие на него силы удовлетворяют условиям равновесия (51) (это будет доказано в § 136). Проведем координатные оси (рис. 98) и изобразим действующие на вал силы: натяжение F веревки, по модулю равное Р, натяжения ремня и составляющие реакций подшиппиков.

Для составления условий равновесия (51) вычисляем предварительно и вносим в таблицу значения проекций всех сил на координатные оси и их моментов относительно этих осей.

Теперь составляем условия равновесия (51); так как получим:

Из уравнений (III) и (IV) находим сразу, учитывая, что

Подставляя найденные значения в остальные уравнения, найдем;

И окончательно

Задача 41. Прямоугольная крышка весом , образующая с вертикалью угол закреплена на горизонтальной оси АВ в точке В цилиндрическим подшипником, а в точке А - подшипником с упором (рис. 99). Крышка удерживается в равновесии веревкой DE и оттягивается перекинутой через блок О иитью с грузом весом на конце (линия КО параллельна АВ). Дано: Определить натяжение веревки DE и реакции подшипников А и В.

Решение. Рассмотрим равновесие крышки. Проведем координатные оси, беря начало в точке В (при этом сила Т пересечет оси что упростит вид уравнений моментов).

Затем изобразим все действующие на крышку заданные силы и реакции связей: силу тяжести Р, приложенную в центре тяжести С крышки, силу Q, равную по модулю Q, реакцию Т веревки и реакции подшипников А и В (рис. 99; показанный пунктиром вектор М к данной задаче не относится). Для составления условий равновесия введем угол и обозначим Подсчет моментов некоторых сил пояснен на вспомогательных рис. 100, а, б.

На рис. 100, а показан вид в проекции на плоскость с положительного конца оси

Этот чертеж помогает вычислять моменты сил Р и Т относительно оси Из него видно, что проекции этих сил на плоскость (плоскость, перпендикулярную ) равны самим силам, а плечо силы Р относительно точки В равно ; плечо же силы Т относительно этой точки равно

На рис. 100, б показан вид в проекции на плоскость с положительного конца оси у.

Этот чертеж (вместе с рис. 100, а) помогает вычислять моменты сил Р и относительно оси у. Из него видно, что проекции этих сил на плоскость равны самим силам, а плечо силы Р относительно точки В равно плечо же силы Q относительно этой точки равно или , что видно из рис. 100, а.

Составляя с учетом сделанных пояснений условия равновесия (51) и полагая одновременно получим:

(I)

Учитывая, что найдем из уравнений (I), (IV), (V), (VI):

Подставляя эти значения в уравнения (II) и (III), получим:

Окончательно,

Задача 42. Решить задачу 41 для случая, когда на крышку дополнительно действует расположенная в ее плоскости пара с моментом поворот пары направлен (если смотреть на крышку сверху) против хода часовой стрелки.

Решение. В дополнение к действующим на крышку силам (см. рис. 99) изображаем момент М пары в виде вектора, перпендикулярного к крышке и приложенного в любой точке, например в точке А. Его проекции на координатные оси: . Тогда, составляя условия равновесия (52), найдем, что уравнения (I) - (IV) останутся такими же, как в предыдущей задаче, а последние два уравнения имеют вид:

Заметим, что этот же результат можно получить, не составляя уравнения в виде (52), а изобразив пару двумя силами, направленными, например, вдоль линий АВ и КО (при этом модули сил будут равны ), и пользуясь затем обычными условиями равновесия.

Решая уравнения (I) - (IV), (V), (VI), найдем результаты, аналогичные полученным в задаче 41, с той лишь разницей, что во все формулы вместо величины войдет . Окончательно получим:

Задача 43. Горизонтальный стержень АВ прикреплен к стене сферическим шарниром А и удерживается в положении, перпендикулярном стене, растяжками КЕ и CD, показанными на рис. 101, а. К концу В стержня подвешен груз весом . Определить реакцию шарнира А и натяжения растяжек, если Весом стержня пренебречь.

Решение. Рассмотрим равновесие стержня. На пего действуют сила Р и реакции Проведем координатные оси и составим условия равновесия (51). Для нахождения проекций и моментов силы разложим ее на составляющие . Тогда по теореме Вариньона , так как так как

Вычисление моментов сил относительно оси пояснено вспомогательным чертежом (рис. 101, б), на котором дан вид в проекции на плоскость

Случаю такого равновесия сил соответствуют два условия равновесия

М= Мо = 0, R* = 0.

Модули главного момента Мо и главного вектора R* рассматриваемой системы определяются по формулам

Mo= (M x 2 + M y 2 + +M z 2) 1/2 ; R*= (X 2 + Y 2 +Z 2) 1/2 .

Они раны нулю только при следующих условиях:

M x = 0, M y =0, M z = 0, X=0, Y=0, Z=0,

которым соответствуют шесть основных уравнений равновесия сил, произвольно расположенных в пространстве

=0; =0;

=0; (5-17)

=0 ; =0.

Три уравнения системы (5-17) слева называются уравнениями моментов сил относительно осей координат, а три справа- уравнениями проекций сил на оси.

При помощи этих формул уравнение моментов можно представить в виде

å (y i Z i - z i Y i)=0; å(z i Х i - x i Z i)=0 ; å(x i Y i - y i X i)=0 . (5-18)

где x i , y i , z i - координаты точек приложения силы Р; Y i , Z i , X i - проекции этой силы на оси координат, могущие иметь любые направления.

Существуют и другие системы шести уравнений равновесия сил, произвольно расположенных в пространстве.

Приведение системы сил к равнодействующей силе.

Если главный вектор системы сил R* не равен нулю, а главный момент Мо или равен нулю, или направлен перпендикулярно к главному вектору, то заданная система сил приводится к равнодействующей силе.

Возможны 2 случая.

1-й случай.

Пусть R*¹ 0; Mo = 0 . В этом случае силы приводят к равнодействующей, линия действия которой проходит через центр приведения О, а сила R* заменяет собой заданную систему сил, т.е. является ее равнодействующей.

2-й случай.

R*¹ 0; Mo¹ 0 и Мо R*. (рис.5.15).

После приведения системы сил к центру О получена сила R* , приложенная в этом центре и равная главному вектору сил, и пара сил, момент которой М равен главному моменту Мо всех сил относительно центра приведения, причем Мо R*.

Выберем силы этой пары R’ и R равными по модулю главному вектору R* , т.е. R= R’ = R*. Тогда плечо этой пары следует взять равным ОК= = М О /R* .Проведем через точку О плоскость I, перпендикулярную к моменту пары сил М . Пара сил R’ , R должна находиться в этой плоскости. Расположим эту пару так, чтобы одна из сил пары R’ была приложена в точке О и направлена противоположно силе R* . Восставим в плоскости I в точке О перпендикуляр к линии действия силы R* , и в точке К на расстоянии ОК= М О /R* от точки О приложим вторую силу пары R .

Отрезок ОК откладываем в такую сторону от точки О, чтобы, смотря навстречу вектору момента М, видеть пару стремящуюся вращать свою плоскость против движения часовой стрелки. Тогда силы R* и R’ , приложенные в точке О, уравновесятся, а сила R пары, приложенная в точке К, заменит собой заданную систему сил, т.е. будет ее равнодействующей. Прямая, совпадающая с линией действия этой силы, является линией действия равнодействующей силы. Рис. 5.15 показывает различие между равнодействующей силой R и силой R* , полученной при приведении сил к центру О.

Равнодействующая R системы сил, приложенная в точке К, имеющая определенную линию действия, эквивалентна заданной системе сил, т.е. заменяет собой эту систему.

Сила же R* в точке О заменяет заданную систему сил только в совокупности с парой сил с моментом М= Мо .

Силу R* можно приложить в любой точке тела, к которой приведены силы. От положения точки зависит только модуль и направление главного момента Мо .

Теорема Вариньона. Момент равнодействующей относительно любой точки равен геометрической сумме моментов составляющих сил относительно этой точки, а момент равнодействующей силы относительно любой оси равен алгебраической сумме моментов, составляющих сил относительно этой оси.