Определение расстояния между точкой и плоскостью, прямой и плоскостью, между плоскостями и скрещивающимися прямыми. Расстояние от точки до плоскости Найти расстояние от точки до плоскости онлайн

Поиск расстояния от точки до плоскости - частая задача, возникающая при решении различных задач аналитической геометрии, например, к этой задаче можно свести нахождение расстояния между двумя скрещивающимися прямыми или между прямой и параллельной ей плоскостью.

Рассмотрим плоскость $β$ и точку $M_0$ с координатами $(x_0;y_0; z_0)$, не принадлежащую плоскости $β$.

Определение 1

Кратчайшим расстоянием между точкой и плоскостью будет перпендикуляр, опущенный из точки $М_0$ на плоскость $β$.

Рисунок 1. Расстояние от точки, до плоскости. Автор24 - интернет-биржа студенческих работ

Ниже рассмотрено как найти расстояние от точки до плоскости координатным методом.

Вывод формулы для координатного метода поиска расстояния от точки до плоскости в пространстве

Перпендикуляр из точки $M_0$, пересекающийся с плоскостью $β$ в точке $M_1$ с координатами $(x_1;y_1; z_1)$, лежит на прямой, направляющим вектором которой является нормальный вектор плоскости $β$. При этом длина единичного вектора $n$ равна единице. Соответственно этому, расстояние от $β$ до точки $M_0$ составит:

$ρ= |\vec{n} \cdot \vec{M_1M_0}|\left(1\right)$, где $\vec{M_1M_0}$ - нормальный вектор плоскости $β$, а $\vec{n}$ - единичный нормальный вектор рассматриваемой плоскости.

В случае, когда уравнение плоскости задано в общем виде $Ax+ By + Cz + D=0$, координаты нормального вектора плоскости представляют собой коэффициенты уравнения $\{A;B;C\}$, а единичный нормальный вектор в этом случае имеет координаты, вычисляемые по следующему уравнению:

$\vec{n}= \frac{\{A;B;C\}}{\sqrt{A^2 + B^2 + C^2}}\left(2\right)$.

Теперь можно найти координаты нормального вектора $\vec{M_1M_0}$:

$\vec{M_0M_1}= \{x_0 – x_1;y_0-y_1;z_0-z_1\}\left(3\right)$.

Также выразим коэффициент $D$, используя координаты точки, лежащей в плоскости $β$:

$D= Ax_1+By_1+Cz_1$

Координаты единичного нормального вектора из равенства $(2)$ можно подставить в уравнение плоскости $β$, тогда мы имеем:

$ρ= \frac{|A(x_0 -x_1) + B(y_0-y_1)+C(z_0-z_1)|}{\sqrt{A^2+B^2+C^2}}= \frac{|Ax_0+ By_0 + Cz_0-(Ax_1+By_1+Cz_1)|}{\sqrt{A^2+B^2+C^2}} = \frac{Ax_0+ By_0 + Cz_0 + D}{\sqrt{A^2+B^2+C^2}}\left(4\right)$

Равенство $(4)$ является формулой для нахождения расстояния от точки до плоскости в пространстве.

Общий алгоритм для нахождения расстояния от точки $M_0$ до плоскости

  1. Если уравнение плоскости задано не в общей форме, для начала необходимо привести его к общей.
  2. После этого необходимо выразить из общего уравнения плоскости нормальный вектор данной плоскости через точку $M_0$ и точку, принадлежащую заданной плоскости, для этого нужно воспользоваться равенством $(3)$.
  3. Следующий этап - поиск координат единичного нормального вектора плоскости по формуле $(2)$.
  4. Наконец, можно приступить к поиску расстояния от точки до плоскости, это осуществляется с помощью вычисления скалярного произведения векторов $\vec{n}$ и $\vec{M_1M_0}$.

Рассмотрим в пространстве некоторую плоскость π и произвольную точку M 0 . Выберем для плоскости единичный нормальный вектор n с началом в некоторой точке М 1 ∈ π, и пусть р(М 0 ,π) - расстояние от точки М 0 до плоскости π. Тогда (рис. 5.5)

р(М 0 ,π) = | пр n M 1 M 0 | = |nM 1 M 0 |, (5.8)

так как |n| = 1.

Если плоскость π задана в прямоугольной системе координат своим общим уравнением Ax + By + Cz + D = 0, то ее нормальным вектором является вектор с координатами {A; B; C} и в качестве единичного нормального вектора можно выбрать

Пусть (x 0 ; y 0 ; z 0) и (x 1 ; y 1 ; z 1) координаты точек M 0 и M 1 . Тогда выполнено равенство Ax 1 + By 1 + Cz 1 + D = 0, так как точка M 1 принадлежит плоскости, и можно найти координаты вектора M 1 M 0 : M 1 M 0 = {x 0 -x 1 ; y 0 -y 1 ; z 0 -z 1 }. Записывая скалярное произведение nM 1 M 0 в координатной форме и преобразуя (5.8), получаем


поскольку Ax 1 + By 1 + Cz 1 = - D. Итак, чтобы вычислить расстояние от точки до плоскости нужно подставить координаты точки в общее уравнение плоскости, а затем абсолютную величину результата разделить на нормирующий множитель, равный длине соответствующего нормального вектора.

Определение расстояния между: 1 - точкой и плоскостью; 2 - прямой и плоскостью; 3 - плоскостями; 4 - скрещивающимися прямыми рассматривается совместно, так как алгоритм решения для всех этих задач по существу одинаков и состоит из геометрических построений, которые нужно выполнить для определения расстояния между заданными точкой А и плоскостью α. Если и есть какое-то различие, то оно состоит лишь в том, что в случаях 2 и 3 прежде чем приступить к решению задачи, следует на прямой m (случай 2) или плоскости β (случай 3) отметить произвольную точку А. При определении расстояния между скрещивающимися прямыми предварительно заключаем их в параллельные плоскости α и β с последующим определением расстояния между этими плоскостями.

Рассмотрим каждый из отмеченных случаев решения задач.

1. Определение расстояния между точкой и плоскостью.

Расстояние от точки до плоскости определяется длиной отрезка перпендикуляра, опущенного из точки на плоскость.

Поэтому решение этой задачи состоит из последовательного выполнения следующих графических операций:

1) из точки А опускаем перпендикуляра на плоскость α (рис. 269);

2) находим точку М пересечения этого перпендикуляра с плоскостью М = а ∩ α;

3) определяем длину отрезка .

Если плоскость α общего положения, то для того чтобы опустить на эту плоскость перпендикуляр, необходимо предварительно определить направление проекций горизонтали и фронтали этой плоскости. Нахождение точки встречи этого перпендикуляра с плоскостью также требует выполнения дополнительных геометрических построений.


Решение задачи упрощается, если плоскость α занимает частное положение относительно плоскостей проекций. В этом случае и проведение проекций перпендикуляра, и нахождение точки его встречи с плоскостью осуществляется без каких-либо дополнительных вспомогательных построений.

ПРИМЕР 1. Определить расстояние от точки А до фронтально проецирующей плоскости α (рис. 270).

РЕШЕНИЕ. Через А" проводим горизонтальную проекцию перпендикуляра l" ⊥ h 0α , а через А" - его фронтальную проекцию l" ⊥ f 0α . Отмечаем точку M" = l" ∩ f 0α . Так как AM || π 2 , то [А" М"] == |АМ| = d.

Из рассмотренного примера видно, насколько просто решается задача, когда плоскость занимает проецирующее положение. Поэтому, если в исходных данных будет задана плоскость общего положения, то, прежде чем приступить к решению, следует перевести плоскость в положение, перпендикулярное к какой-либо плоскости проекции.

ПРИМЕР 2. Определить расстояние от точки К до плоскости, заданной ΔАВС (рис. 271).

1. Переводим плоскость ΔАВС в проецирующее положение *. Для этого переходим от системы xπ 2 /π 1 к x 1 π 3 /π 1: направление новой оси х 1 выбирается перпендикулярным к горизонтальной проекции горизонтали плоскости треугольника.

2. Проецируем ΔАВС на новую плоскость π 3 (плоскость ΔАВС спроецируется на π 3 , в [ С" 1 В" 1 ]).

3. Проецируем на ту же плоскость точку К (К" → К" 1).

4. Через точку К" 1 проводим (К" 1 М" 1)⊥ отрезку [С" 1 В" 1 ]. Искомое расстояние d = |K" 1 M" 1 | .

Решение задачи упрощается, если плоскость задана следами, так как отпадает необходимость в проведении проекций линий уровня.

ПРИМЕР 3. Определить расстояние от точки К до плоскости α, заданной следами (рис. 272) .

* Наиболее рациональным путем перевода плоскости треугольника в проецирующее положение является способ замены плоскостей проекций, так как в этом случае достаточно построить только одну вспомогательную проекцию.

РЕШЕНИЕ. Заменяем плоскость π 1 плоскостью π 3 , для этого проводим новую ось x 1 ⊥ f 0α . На h 0α отмечаем произвольную точку 1" и определяем ее новую горизонтальную проекцию на плоскости π 3 (1" 1). Через точки X α 1 (Х α 1 = h 0α 1 ∩ x 1) и 1" 1 проводим h 0α 1 . Определяем новую горизонтальную проекцию точки К → К" 1 . Из точки К" 1 опускаем перпендикуляр на h 0α 1 и отмечаем точку его пересечения с h 0α 1 - М" 1 . Длина отрезка K" 1 M" 1 укажет искомое расстояние.

2. Определение расстояния между прямой и плоскостью.

Расстояние между прямой и плоскостью определяется длиной отрезка перпендикуляра, опущенного из произвольной точки прямой на плоскость (см. рис. 248).

Поэтому решение задачи по определению расстояния между прямой m и плоскостью α ничем не отличается от рассмотренных в п. 1 примеров на определение расстояния между точкой и плоскостью (см. рис. 270 ... 272). В качестве точки можно брать любую точку, принадлежащую прямой m.

3.Определение расстояния между плоскостями.

Расстояние между плоскостями определяется величиной отрезка перпендикуляра, опущенного из точки, взятой на одной плоскости, на другую плоскость.

Из этого определения вытекает, что алгоритм решения задачи по нахождению расстояния между плоскостями α и β отличается от аналогичного алгоритма решения задачи по определению расстояния между прямой m и плоскостью α лишь тем, что прямая m должна принадлежать плоскости α, т. е., чтобы определить расстояние между плоскостями α и β, следует:

1) взять в плоскости α прямую m;

2) выделить на прямой m произвольную точку А;

3) из точки А опустить перпендикуляр l на плоскость β;

4) определить точку М - точку встречи перпендикуляра l с плоскостью β;

5) определить величину отрезка .

На практике целесообразно пользоваться другим алгоритмом решения, который будет отличаться от приведенного лишь тем, что, прежде чем приступить к выполнению первого пункта, следует перевести плоскости в проецирующее положение.

Включение в алгоритм этой дополнительной операции упрощает выполнение всех без исключения остальных пунктов, что, в конечном счете, приводит к более простому решению.

ПРИМЕР 1. Определить расстояние между плоскостями α и β (рис. 273).

РЕШЕНИЕ. Переходим от системы xπ 2 /π 1 к x 1 π 1 /π 3 . По отношению к новой плоскости π 3 плоскости α и β занимают проецирующее положение, поэтому расстояние между новыми фронтальными,следами f 0α 1 и f 0β 1 является искомым.

В инженерной практике часто приходится решать задачу на построение плоскости, параллельной данной и удаленной от нее на заданное расстояние. Приведенный ниже пример 2 иллюстрирует решение такой задачи.

ПРИМЕР 2. Требуется построить проекции плоскости β, параллельной данной плоскости α (m || n), если известно, что расстояние между ними равно d (рис. 274).

1. В плоскости α проводим произвольные горизонталь h (1, 3) и фронталь f (1,2).

2. Из точки 1 восставляем перпендикуляр l к плоскости α(l" ⊥ h", l" ⊥ f").

3. На перпендикуляре l отмечаем произвольную точку А.

4. Определяем длину отрезка - (положение указывает на эпюре метрически неискаженное направление прямой l).


5. Откладываем на прямой (1"А 0) от точки 1" отрезок = d.

6. Отмечаем на проекциях l" и l" точки В" и В", соответствующие точке В 0 .

7. Через точку В проводим плоскость β (h 1 ∩ f 1). Чтобы β || α, необходимо coблюдать условие h 1 || h и f 1 || f.

4. Определение расстояния между скрещивающимися прямыми.

Расстояние между скрещивающимися прямыми определяется длиной перпендикуляра, заключенного между параллельными плоскостями, которым принадлежат скрещивающиеся прямые.

Для того чтобы через скрещивающиеся прямые m и f провести взаимно параллельные плоскости α и β, достаточно через точку А (А ∈ m) провести прямую р, параллельную прямой f, а через точку В (В ∈ f) - прямую k, параллельную прямой m. Пересекающиеся прямые m и р, f и k определяют взаимно параллельные плоскости α и β (см. рис. 248, е). Расстояние между плоскостями α и β равно искомому расстоянию между скрещивающимися прямыми m и f.

Можно предложить и другой путь для определения расстояния между скрещивающимися прямыми, который состоит в том, что с помощью какого-либо способа преобразования ортогональных проекций одна из скрещивающихся прямых переводится в проецирующее положение. В этом случае одна проекция прямой вырождается в точку. Расстояние между новыми проекциями скрещивающихся прямых (точкой A" 2 и отрезком C" 2 D" 2) является искомым.

На рис. 275 приведено решение задачи на определение расстояния между скрещивающимися прямыми а и b, заданными отрезками [АВ] и [ CD]. Решение выполняют в следующей последовательности:

1. Переводят одну из скрещивающихся прямых (а) в положение, параллельное плоскости π 3 ; для этого переходят от системы плоскостей проекции xπ 2 /π 1 к новой x 1 π 1 /π 3 , ось x 1 проводят параллельно горизонтальной проекции прямой а. Определяют а" 1 [А" 1 В" 1 ] и b" 1 .

2. Путем замены плоскости π 1 плоскостью π 4 переводят прямую


а в положение а" 2 , перпендикулярное плоскости π 4 (новую ось х 2 проводят перпендикулярно а" 1).

3. Строят новую горизонтальную проекцию прямой b" 2 - [ C" 2 D" 2 ].

4. Расстояние от точки А" 2 до прямой C" 2 D" 2 (отрезок (А" 2 М" 2 ] (является искомым.

Следует иметь в виду, что перевод одной из скрещивающихся прямых в проецирующее положение является ничем иным, как переводом плоскостей параллелизма, в которые можно заключить прямые а и b, также в проецирующее положение.

В самом деле, переведя прямую а в положение, перпендикулярное плоскости π 4 , мы обеспечиваем перпендикулярность любой плоскости, содержащей прямую а, плоскости π 4 , в том числе и плоскости α, определяемой прямыми а и m (а ∩ m, m || b). Если мы теперь проведем прямую n, параллельную а и пересекающую прямую b, то мы получим плоскость β, являющуюся второй плоскостью параллелизма, в которую заключены скрещивающиеся прямые а и b. Так как β || α, то и β ⊥ π 4 .

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Пусть существует плоскость . Проведем нормаль
через начало координат О. Пусть заданы
– углы, образованные нормальюс осями координат.
. Пусть– длина отрезка нормали
до пересечения с плоскостью. Считая известными направляющие косинусы нормали, выведем уравнение плоскости.

Пусть
) – произвольная точка плоскости. Вектор единичной нормали имеет координаты. Найдем проекцию вектора
на нормаль.

Поскольку точка М принадлежит плоскости, то

.

Это и есть уравнение заданной плоскости, называющееся нормальным .

Расстояние от точки до плоскости

Пусть дана плоскость ,М *
– точка пространства,d – её расстояние от плоскости.

Определение. Отклонением точки М* от плоскости называется число (+ d ), если M * лежит по ту сторону от плоскости, куда указывает положительное направление нормали , и число (-d ), если точка расположена по другую сторону плоскости:

.

Теорема . Пусть плоскость с единичной нормальюзадана нормальным уравнением:

Пусть М *
– точка пространства Отклонение т.M * от плоскости задаётся выражением

Доказательство. Проекцию т.
* на нормаль обозначимQ . Отклонение точки М* от плоскости равно

.

Правило. Чтобы найти отклонение т. M * от плоскости, нужно в нормальное уравнение плоскости подставить координаты т. M * . Расстояние от точки до плоскости равно .

Приведение общего уравнения плоскости к нормальному виду

Пусть одна и та же плоскость задана двумя уравнениями:

Общее уравнение,

Нормальное уравнение.

Поскольку оба уравнения задают одну плоскость, их коэффициенты пропорциональны:

Первые три равенства возведем в квадрат и сложим:

Отсюда найдем – нормирующий множитель:

. (10)

Умножив общее уравнение плоскости на нормирующий множитель, получим нормальное уравнение плоскости:

Примеры задач на тему «Плоскость».

Пример 1. Составить уравнение плоскости , проходящей через заданную точку
(2,1,-1) и параллельной плоскости.

Решение . Нормаль к плоскости :
. Поскольку плоскости параллельны, то нормальявляется и нормалью к искомой плоскости. Используя уравнение плоскости, проходящей через заданную точку (3), получим для плоскостиуравнение:

Ответ:

Пример 2. Основанием перпендикуляра, опущенного из начала координат на плоскость , является точка
. Найти уравнение плоскости.

Решение . Вектор
является нормалью к плоскости. ТочкаМ 0 принадлежит плоскости. Можно воспользоваться уравнением плоскости, проходящей через заданную точку (3):

Ответ:

Пример 3. Построить плоскость , проходящую через точки

и перпендикулярную плоскости :.

Следовательно, чтобы некоторая точка М (x , y , z ) принадлежала плоскости , необходимо, чтобы три вектора
были компланарны:

=0.

Осталось раскрыть определитель и привести полученное выражение к виду общего уравнения (1).

Пример 4. Плоскость задана общим уравнением:

Найти отклонение точки
от заданной плоскости.

Решение . Приведем уравнение плоскости к нормальному виду.

,

.

Подставим в полученное нормальное уравнение координаты точки М* .

.

Ответ:
.

Пример 5. Пересекает ли плоскость отрезок.

Решение . Чтобы отрезок АВ пересекал плоскость, отклонения иот плоскостидолжны иметь разные знаки:

.

Пример 6. Пересечение трех плоскостей в одной точке.



.

Система имеет единственное решение, следовательно, три плоскости имеют одну общую точку.

Пример 7. Нахождение биссектрис двугранного угла, образованного двумя заданными плоскостями.

Пусть и- отклонение некоторой точки
от первой и второй плоскостей.

На одной из биссектральных плоскостей (отвечающей тому углу, в котором лежит начало координат) эти отклонения равны по модулю и знаку, а на другой – равны по модулю и противоположны по знаку.

Это уравнение первой биссектральной плоскости.

Это уравнение второй биссектральной плоскости.

Пример 8. Определение местоположения двух данных точек иотносительно двугранных углов, образованных данными плоскостями.

Пусть
. Определить: в одном, в смежных или в вертикальных углах находятся точкии.


а). Если илежат по одну сторону оти от, то они лежат в одном двугранном углу.

б). Если илежат по одну сторону оти по разные от, то они лежат в смежных углах.

в). Если илежат по разные стороны оти, то они лежат в вертикальных углах.

Системы координат 3

Линии на плоскости 8

Линии первого порядка. Прямые на плоскости. 10

Угол между прямыми 12

Общее уравнение прямой 13

Неполное уравнение первой степени 14

Уравнение прямой “в отрезках” 14

Совместное исследование уравнений двух прямых 15

Нормаль к прямой 15

Угол между двумя прямыми 16

Каноническое уравнение прямой 16

Параметрические уравнения прямой 17

Нормальное (нормированное) уравнение прямой 18

Расстояние от точки до прямой 19

Уравнение пучка прямых 20

Примеры задач на тему «прямая на плоскости» 22

Векторное произведение векторов 24

Свойства векторного произведения 24

Геометрические свойства 24

Алгебраические свойства 25

Выражение векторного произведения через координаты сомножителей 26

Смешанное произведение трёх векторов 28

Геометрический смысл смешанного произведения 28

Выражение смешанного произведения через координаты векторов 29

Примеры решения задач