Химические свойства. Особенности ароматических соединений. Ароматические углеводороды: все о них Составляют все ароматические детали ансамбля

1. Классификация ароматических углеводородов.

2. Гомологический ряд моноциклических аренов, номенклатура, получение.

3. Изомерия, строение бензола и его гомологов.

4. Свойства аренов.

Аренами называют богатые углеродом циклические углеводороды, которые содержат в молекуле бензольное ядро и обладают особыми физическими и химическими свойствами. Арены по числу бензольных колец в молекуле и способа соединения циклов подразделяют на моноциклические (бензол и его гомологи) и полициклические (с конденсированными и изолированными циклами) соединения.

Арены бензольного ряда можно рассматривать как продукты замещения атомов водорода в молекуле бензола на алкильные радикалы. Общая формула таких аренов СnH 2 n- 6. В названии монозамещенных аренов указывают название радикала и цикла (бензол):

бензол метилбензол (толуол) этилбензол.

В более замещенных аренах положение радикалов указывают наименьшими цифрами, в дизамещенных аренах положение радикалов называют: 1,2 - орто (o -)-, 1,3 - мета (м -)- и 1,4 - пара (п -)-:

1,3-диметилбензол 1,2-метилэтилбензол

м -диметилбензол (м -ксилол) о -метилэтилбензол (о -ксилол)

Для аренов широко распространены тривиальные названия (некоторые названия указаны в скобках).

Нахождение в природе.

Ароматические углеводороды встречаются в растительных смолах и бальзамах. Фенантрен в частично или полностью гидрированном виде содержится в структурах многих природных соединений, например стероидов, алкалоидов.

Получение аренов:

1. сухая перегонка каменного угля;

2. дегидрирование циклоалканов

3. дегидроциклизация алканов с 6 и более атомами углерода в составе

4. алкилирование

Изомерия. Для гомологов бензола характерна структурная изомерия: различное строение углеродного скелета бокового радикала и различные состав и расположение радикалов в бензольном кольце. Например, изомеры ароматических углеводородов состава С 9 Н 12 (пропилбензол, изопропилбензол, о-метилэтилбензол и 1,2,4-триметилбензол):

Строение. Ароматические углеводороды имеют целый ряд особенностей в электронном строении молекул.

Структурную формулу бензола впервые предложил А. Кекуле. Это шестичленный цикл с чередующимися двойными и одинарными связями, при этом двойные связи перемещаются в структуре:

В обеих формулах углерод четырехвалентен, все атомы углерода равноценны и дизамещенные бензола существуют в виде трех изомеров (орто -, мета -, пара- ). Однако такая структура бензола противоречила его свойствам: бензол не вступал в характерные для непредельных углеводородов реакции присоединения (например, брома) и окисления (например, с перманганатом калия), для него и его гомологов основной тип химического превращения - реакции замещения.

Современный подход к описанию электронного строения бензола разрешает это противоречие следующим образом. Атомы углерода в молекуле бензола находятся в sр 2 -гибридизации. Каждый из атомов углерода образует три ковалентные σ-связи - 2 связи с соседними атомами углерода (sр 2 -sр 2 -перекрывание орбиталей) и одну с атомом водорода (sр 2 -s- перекрывание орбиталей). Негибридизованные р-орбитали за счет бокового перекрывания образуют π-электронную сопряженную систему (π,π-сопряжение), содержащую шесть электронов. Бензол представляет собой плоский правильный шестиугольник с длиной связи углерод-углерод 0,14нм, связи углерод-водород 0,11нм, валентными углами 120 0:

Молекула бензола стабильнее циклических соединений с изолированными двойными связями, поэтому бензол и его гомологи склонны к реакциям замещения (бензольное кольцо сохраняется), а не присоединения и окисления.

Сходство в строении и свойствах (ароматичность) с бензолом проявляют и другие циклические соединения. Критерии ароматичности (Э. Хюккель, 1931г.):

а) плоская циклическая структура, т.е. атомы, образующие цикл, находятся в sр 2 -гибридизации; б) сопряженная электронная система; в) число электронов (N) в кольце равно 4n+2, где n - любое целочисленное значение - 0,1,2,3 и т.д.

Критерии ароматичности применимы как к нейтральным, так и заряженным циклическим сопряженным соединениям, поэтому ароматическими соединениями будут, например:

фуран катион циклопропенила.

Для бензола и других ароматических соединений наиболее характерны реакции замещения атомов водорода при углеродных атомах в цикле и менее характерны реакции присоединения по π-связи в цикле.

Физические свойства.

Бензол и его гомологи являются бесцветными жидкостями и кристаллическими веществами со своеобразным запахом. Они легче воды и плохо в ней растворяются. Бензол неполярное соединение(μ=0), алкилбензолы -

полярные соединения(μ≠0).

Химические свойства.

Электрофильное замещение. Наиболее характерным превращением для аренов является электрофильное замещение - S Е. Реакция протекает в две стадии с образованием промежуточного σ-комплекса:

Условиях реакции: температура 60-80 0 С, катализаторы - кислоты Льюса или минеральные кислоты.

Типичные S Е - реакции:

а) галогенирование (Cl 2 , Br 2):

б) нитрование:

в ) сульфирование (H 2 SO 4 , SO 3 , олеум):

г) алкилирование по Фриделю-Крафтсу (1877г.) (RНal, ROH, алкены):

д) алкилирование по Фриделю-Крафтсу (галогенангидриды, ангидриды карбоновых кислот):

У гомологов бензола в результате влияния бокового радикала (+I-эффект, электронодонорная группа) π-электронная плотность бензольного кольца распределена неравномерно, увеличиваясь в 2,4,6-положениях. Поэтому S Е -реакции протекают направлено (в 2,4,6- или о- и п- положения). Гомологи бензола по сравнению с бензолом в реакциях этого типа проявляют большую реакционная активность.

толуол п -хлортолуол о -хлортолуол

Реакции боковых радикалов в алкилбензолах (радикальное замещение - S R и окисление).

Реакции радикального замещения протекают, как и в предельных углеводородах, по цепному механизму и включают стадии инициирования, роста и обрыва цепи. Реакция хлорирования протекает ненаправлено, реакция бромирования региоселективна - замещение водорода происходит уα-углеродного атома.

В алкилбензолах боковая цепь окисляется перманганатом калия, бихроматом калия с образованием карбоновых кислот. Независимо от длины боковой цепи, окисляется атом углерода, связанный с бензольным ядром (α-углеродный или бензильный атом углерода), остальные атомы углерода окисляются до СО 2 или карбоновых кислот.

этилбензол бензойная кислота

п -метилэтилбензол терефталевая кислота

Реакции бензола с нарушением ароматической системы.

Ароматические углеводороды имеют прочный цикл, поэтому реакции с нарушением ароматической системы (окисление, радикальное присоединение) протекают в жестких условиях (высокие температуры, сильные окислители).

а) радикальное присоединение:

1. гидрирование

толуол циклогексан

2. хлорирование

бензол 1,2,3,4,5,6-гексахлорциклогексан (гексахлоран).

Продукт этой реакции представляет смесь пространственных изомеров.

Ориентация электрофильного замещения в ароматических соединениях. Заместители в бензольном кольце по своему ориентирующему влиянию делятся на два типа: орто -, пара -ориентанты (заместители 1 рода) и мета -ориентанты (заместители 2 рода).

Заместители 1 рода - это электронодонорные группы, которые повышают электронную плотность кольца, увеличивают скорость реакции электрофильного замещения и активируют бензольное кольцо в этих реакциях:

D(+I-эффект): - R, -СН 2 ОН, -СН 2 NН 2 и т.д.

D(-I,+М-эффекты): -NH 2 ,-OH, -OR, -NR 2 , -SH и т.д.

Заместители 2 рода – электроноакцепторные группы, которые понижают электронную плотность кольца, уменьшают скорость реакции электрофильного замещения и дезактивируют бензольное кольцо в этих реакциях:

А (-I-эффект): -SO 3 H, -CF 3 , -CСl 3 и т.д.

А (-I, -М -эффект): -НС=О, -СООН, -NO 2 и т. д.

Атомы галогенов занимают промежуточное положение - они понижают электронную плотность кольца, уменьшают скорость реакции электрофильного замещения и дезактивируют бензольное кольцо в этих реакциях, однако это о -,п -ориентанты.

Если в бензольном кольце находится два заместителя, то их ориентирующее действие может совпадать (согласованная ориентация ) или не совпадать (несогласованная ориентация ). В реакциях электрофильного замещения соединения с согласованной ориентацией образуют меньшее количество изомеров, во втором случае образуется смесь из большего числа изомеров. Например:

п - гидроксибензойная кислота м - гидроксибензойная кислота

(согласованная ориентация) (несогласованная ориентация)

Полициклические конденсированные ароматические углеводороды (нафталин, антрацен, фенантрен и т.д.), в основном, по свойствам похожи на бензол, но вместе с тем имеют некоторые отличия.

Применение:

1. ароматические углеводороды - сырье для синтеза красителей, взрывчатых веществ, лекарственных препаратов, полимеров, поверхностно-активных веществ, карбоновых кислот, аминов;

2. жидкие ароматические углеводороды хорошие растворители органических соединений;

3. арены - добавки для получения высокооктановых бензинов.

Знаете ли вы, что -В 1649 году немецкий химик Иоганн Глаубер впервые получил бензол.

В 1825 году М. Фарадей выделил из светильного газа углеводород и установил его состав - С 6 Н 6 .

В 1830 году Юстус Либих назвал полученное соединение бензолом (от араб. Вen-аромат + zoa-сок + лат. ol-масло).

В1837 году Огюстом Лораном назван радикал бензола С 6 Н 5 - фенил (от греч phenix-освещать).

В 1865 году немецкий химик-органик Фридрих Август Кекуле предложил формулу бензола с чередующимися двойными и одинарными связями в шестичленном цикле.

В 1865-70-х годах В. Кернер предложил использовать приставки для обозначения взаимного расположения двух заместителей: 1,2 положение - орто- (orthos - прямой);1,3- мета (meta - после) и 1,4- пара (para - напротив).

Ароматические углеводороды - высокотоксичные вещества, вызывают отравление и поражение некоторых органов, например почек, печени.

Некоторые ароматические углеводороды - канцерогены (вещества, вызывающие раковые заболевания), например бензол (вызывает лейкемию), один из сильнейших - бензопирен (содержится в табачном дыме).

Это циклические соединения, ненасыщенные по составу, не проявляющие типичных свойств непредельных соединений, а обладающие особым комплексом свойств, объединенных термином “ароматический характер” кольца.

Основные признаки ароматичности

1) Квантово-химический критерий - соответствие структуры правилам Хюккеля

а) наличие 4n+2 (n-целое число, включая 0)(p)-электронов в замкнутой цепи сопряжения;

б) плоское строение кольца.

2) Физический критерий – высокие значения энергии сопряжения (делокализации). Чем больше Е, тем больше ароматичность.

3) Выравнивание длин простых и двойных связей в кольце.

4)Химический критерий – наличие комплекса химических свойств, характеризующих “ароматический характер”.

а) устойчивость двойных связей кольца в реакциях присоединения и окисления;

б) способность легко вступать в реакции замещения (по ионному механизму);

в) способность легко образовываться в различных реакциях, т.е. высокая термодинамическая стойкость кольца.

4.6.1.Ароматические соединения

подразделяются на:

    соединения бензоидного строения, содержат в молекуле кольцо циклогексатриена (бензола).

    соединения небензоидного строения:

а) некоторые гетероциклические соединения;

б) некоторые производные ненасыщенных циклических соединений с 3, 5, 7 и т.д. углеродными атомами в цикле.

1 Группа – ароматические соединения бензоидного строения (ароматические углеводороды)

Простейший представитель – бензол С 6 Н 6 – по строению должен соответствовать циклогексатриену, т.к. его можно получить дегидрированием 1,3-циклогексадиена.

H 2 +

Такую формулу строения бензола предложил Кекуле. Однако эта формула не описывает всех особенностей свойств бензола.

Отличительные особенности химического поведения ароматических углеводородов

1. Не дают качественных реакций на двойную связь – не обесцвечивают бромную воду и перманганат калия, не полимеризуются, т.е. устойчивы в реакциях присоединения и окисления.

2. При более энергичном воздействии, чем на непредельные углеводороды, вступают в реакции присоединения наиболее активных реагентов, например, водорода и хлора, при этом сразу происходит полное насыщение кольца, никаких промежуточных продуктов присоединения по одной или двум связям не обнаружено. Значит, в бензольном кольце вся система двойных связей ведет себя как единое целое.

3H 2

3. Наиболее характерны для ароматических углеводородов реакции замещения, при которых двойные связи не затрагиваются. Это подтверждает прочность ароматического кольца.

Cl 2
HCl +

4. У ортодизамещенных гомологов существует только 1 изомер, т.е. формулы (1) и (2) о-ксилола равноценны.


Это подтверждается и реакцией озонирования. При разложении озонида получена смесь глиоксаля, метилглиоксаля и диметилглиоксаля. Это возможно в том случае, если реакция идет с участием соединений формул (1) и (2).

3O 3

-3 H 2 O 2 +

диметилглиоксаль

глиоксаль

3O 3 + 3H 2 O

метилглиоксаль

глиоксаль

Значит, положение двойных связей в молекуле бензола нельзя считать закрепленным. Сейчас своеобразные свойства бензола получили свое объяснение в свете электронных представлений.

Найдены валентные углы и длины связей. Атомы углерода в молекуле бензола расположены по углам правильного шестиугольника. Углы шестиугольника составляют составляют 120 0 С. В той же плоскости под углом 120 0 С к углерод - углеродным связям расположены атомы водорода.

Угол (1,54+1,34)/2

Такая геометрия молекулы имеет место при sp 2 -гибридизации атомов углерода. Негибридизованные р-электроны занимают гантелеобразные орбиты, оси которых перпендикулярны плоскости шестиугольника и параллельны друг другу, поэтому каждое из них равноценно перерывается с двумя соседними. Выше и ниже кольца образуется единое шестиэлектронное облако, “ароматический секстет”.

Длины связей между атомами углерода в ароматическом кольце имеют величину 1,4А 0 , промежуточную между длинами простых и двойных связей, но несколько меньше, чем среднеарифметическое: С-С 1,54А 0 , С=С 1,34 А 0 . Это служит свидетельством большей электронной плотности между атомами углерода по сравнению с ненасыщенными, что обуславливает большую прочность ароматического кольца. Подтверждением служит сравнение энергии образования бензола с вычисленной для циклогексатриена; Е эксп. на 39,6 ккал/моль меньше, чем Е выч. Эта разница (Е выч - Е эксп. =Е) носит название энергии сопряжения.

Формула Кекуле, таким образом, не точно описывает состояние связей в молекуле бензола. Это понял и сам Кекуле. Для уточнения он ввел понятие “осцилляции валентностей”, согласно которой считалось, что двойные связи в молекуле бензола не закреплены, то есть, что формулы (1) и (2) равнозначны.

С учетом этой поправки формула Кекуле используется и сейчас. Применяются также формулы Армстронга-Байера, которая отражает выравнивание электронной плотности в кольце, и некоторые другие.

Арены (ароматические углеводороды) - соединения, в молекулах которых содержится одно или несколько бензольных колей - циклических групп атомов углерода со специфическим характером связей.

Бензол - молекулярная формула С 6 Н 6 . Впервые была предложена А. Кекуле:

Строение аренов.

Все 6 атомов углерода находятся в sp 2 -гибридизации . Каждый атом углерода образует 2 σ -связи с двумя соседними атомами углерода и одним атомом водорода, которые находятся в одной плоскости. Углы составляют 120°. Т.е. все атомы углерода лежат в одной плоскости и образуют шестигранник. У каждого атома есть негибридная р -обиталь, на которой находится неспаренный электрон. Эта орбиталь перпендикулярна плоскости, и поэтому π -электронное облако «размазано» по всем атомам углерода:

Все связи равноценны. Энергия сопряжения - количество энергии, которую надо затратить, чтобы разрушить ароматическую систему.

Именно это обуславливает специфические свойства бензола - проявление ароматичности. Это явление было открыто Хюккелем, и называется правилом Хюккеля.

Изомерия аренов.

Арены можно разделить на 2 группы:

  • производные бензола:

  • конденсированные арены:

Общая формула аренов - С n H 2 n -6 .

Для аренов характерна структурная изомерия, которая объясняется взаимным расположением заместителей в кольце. Если в кольце находится 2 заместителя, то они могут находиться в 3-х различных положениях - орто (о-), мета (м-), пара (п-):

Если от бензола «отобрать» один протон, то образуется радикал - C 6 H 5 , которое носит название арильного радикала. Простейшие:

Называют арены словом «бензол» с указанием заместителей в кольце и их положения:

Физические свойства аренов.

Первые члены ряда - жидкости без цвета с характерным запахом. Они хорошо растворяются в органических растворителях, но нерастворимы в воде. Бензол токсичен, но имеет приятный запах. Вызывает головную боль и головокружения, при вдыхании больших количеств паров можно потерять сознание. Раздражает слизистую оболочку и глаза.

Получение аренов.

1. Из алифатических углеводородов с помощью «ароматизации» предельных углеводородов, входящих в состав нефти. При пропускании над платиной или оксидом хрома наблюдается дигидроциклизация:

2. Дегидрирование циклоалканов:

3. Из ацетилена (тримеризация) при пропускании над раскаленным углем при 600°С:

4. Реакция Фриделя - Крафтса в присутствии хлорида алюминия :

5. Сплавление солей ароматических кислот с щелочью:

Химические свойства аренов.

Реакции замещения аренов.

Ядро аренов обладает подвижной π -системой, на которую действуют электрофильные реагенты. Для аренов характерно электрофильное замещение, которое можно представить так:

Электрофильная частица притягивается к π -системе кольца, затем образуется прочная связь между реагентом Х и одним из атомов углерода, при этом единство кольца нарушается. Для восстановления ароматичности выбрасывается протон, а 2 электрона С-Н переходят в π-систему кольца.

1. Галогенирование происходит в присутствии катализаторов - безводных хлоридов и бромидов алюминия , железа :

2. Нитрование аренов. Бензол очень медленно реагирует с концентрированной азотной кислотой при сильном нагревании. Но если добавить серную кислоту , то реакция протекает очень легко:

3. Сульфирование протекает под воздействием 100% - серной кислоты - олеума:

4. Алкилирование алкенами . В результате происходит удлинение цепи, реакция протекает в присутствии катализатора - хлорида алюминия.

АРОМАТИЧЕСКИЕ СОЕДИНЕНИЯ , обширный класс органических соединений, характерной чертой которых являются: 1) циклическое строение и 2) особая система распределения сил сродства внутри молекулы, сообщающая циклу большую прочность. Простейшим веществом этого чрезвычайно богатого соединениями класса органической химии является бензол, основной углеродный скелет которого схематически изображается в виде шестиугольника - «ядра». К ароматическим соединениям относят не только производные бензола и его гомологов, но также и конденсированные системы типа нафталина, фенантрена, хризена и т. д., составленные из двух, трех, четырех и т. д. ядер бензола, равно как и многие гетероциклические соединения, обладающие ароматическим характером, т. е. комплексом определенных специфических свойств. Свойства, отличающие ароматические соединения от жирных и алициклических:

1) Атомы водорода обладают большой подвижностью, что проявляется в способности ароматических соединений входить в различного рода реакции замещения. Особенно характерными являются химические превращения, протекающие при действии азотной и серной кислот. При этом происходит нитрование или сульфирование ароматических соединений, т. е. процессы, связанные с обменом атома (или атомов) водорода на нитро-группу NО 2 или сульфо-группу SО 3 H:

Обе эти реакции широко используются в технологии органических веществ.

2) Различные реакционные группы в ароматических соединениях по некоторым своим свойствам значительно отличаются от свойств этих же групп в соединениях жирного ряда: галоиды в галоидных производных бензола обладают меньшей реакциеспособностью по сравнению с галоидными алкилами; для обмена галоида в галоидных арилах (арил - ароматический углеводородный остаток) на другие группы (гидроксил, амино-группу и т. д.) приходится прибегать к более сильным химическим воздействиям, чем в соответствующих алифатических соединениях; щелочные свойства ароматических аминов значительно слабее аминов жирных. Этот «кислый» или «отрицательный» характер ароматического остатка находит свое отражение также в ряде других свойств ароматических соединений. Особенно резко отличаются ароматические амины своим отношением к азотистой кислоте; с ней они дают т. н. диазосоединения, аналоги которых в жирном ряду известны только в исключительных случаях. Изменение свойств гидроксила в ароматических соединениях выражается в повышении его кислотности; поэтому гидроксильные производные бензола – фенолы - обладают свойствами настоящих кислот. Они реагируют с водными растворами едких щелочей, образуя солеобразные соединения - феноляты. Дигидроксильные производные бензола, нафталина и т. д. обладают свойством при окислении, отнятием двух атомов Н, превращаться в своеобразные соединения - хиноны.

3) Главное отличие ароматических соединений от алифатических, и в особенности от сходных с ними по строению углеродного скелета алициклических соединений, заключается в особом состоянии насыщенности ароматического цикла. Эта насыщенность сообщает ароматическим соединениям чрезвычайную прочность и стойкость по отношению к различным химическим воздействиям. Эмпирические формулы ароматических углеводородов (С 6 Н 6 , С 7 Н 8 , С 10 Н 8 , С 14 Н 8 и т. д.) показывают, что эти соединения д. б. отнесены к классу ненасыщенных, характеризующихся реакциями присоединения и окисления. Между тем в этом отношении ароматических соединений обнаруживают существенные отличия. Бромистый водород, обычно легко присоединяющийся в месте двойной (этиленовой) связи, к ароматическим соединениям не присоединяется. Присоединение брома - одна из самых употребительных реакций на двойную связь - осуществляется в отношении ароматических соединений только при наличии особых условий. Особенно характерна устойчивость ароматического «ядра» к окислителям. В то время как жирные и алициклические ненасыщенные углеводороды быстро реагируют с марганцевокислым калием с образованием кислот, бензол в тех же условиях почти не изменяется. Если же при ядре ароматического соединения находится боковая цепь, как, например, в этилбензоле (С 6 Н 5 ·СН 2 ·СН 3), то последняя окисляется в карбоксильную группу, и полученное в результате соединение (бензойная кислота С 6 Н 5 ·СООН) сохраняет основной углеродный скелет ароматического соединения - свое ядро. Даже при сильных химических воздействиях, например при сплавлении с щелочами, циклы исходных соединений остаются неизменными.

Для объяснения своеобразных свойств ароматических соединений был предложен целый ряд различных теорий. Первая формула строения бензола была дана немецким химиком Кекуле (в 1865 г.). В структурной формуле Кекуле - 6 расположенных в виде шестиугольника метиновых групп (= СН-), из которых каждая связана с соседними одной двойной (этиленовой) связью и одной простой (формула I). В виду того, что этиленовые связи характеризуются вполне определенными химическими свойствами, которых ароматические соединения лишены, эта формула нуждалась в некоторых дополнительных гипотезах.



Одной из них явилась гипотеза парциальных валентностей Тиле, по которой остаточные силы химического сродства атомов углерода взаимно насыщаются, образуя замкнутую систему, где три двойные связи находятся в «конъюгации» - взаимном сопряжении (формула II). С развитием учения о природе химических сил, гл. обр. в связи с теорией Вернера, представления о строении бензола подвергались некоторым видоизменениям. По Вернеру, силы химического сродства углерода не представляют собой отдельных, независимо друг от друга действующих сил (единицы сродства), но являются частичным выражением одной силы - общего запаса сродства, заложенного в атоме углерода. Т. о. значение каждой данной валентности заранее не определено, но зависит от состояния насыщенности углеродного атома, т. е. от количества сродства, потраченного на насыщение другими атомами или группами. При циклическом строении молекулы подобное насыщение может происходить не только за счет связывания других, не входящих в цикл, атомов, но иногда осуществляется внутренним распределением сродства между теми атомами, из которых данный цикл составлен. В бензоле этому способствует шестичленная симметричная структура, благодаря которой остаточное сродство каждого из шести атомов углерода приходит в состояние внутреннего насыщения, сообщающего циклу большую прочность и устойчивость. Подобные представления о строении бензола находят свое выражение в формуле III, где дугообразные связи иллюстрируют характер внутреннего циклического насыщения. В последнее время, в связи с учением о строении атома, были предложены новые электронные формулы строения бензола и других ароматических соединений, однако до сих пор они не получили широкого распространения в органической химии и являются только б. или м. удачной попыткой объяснения свойств ароматических соединений, как результата действия электростатических сил.

Главным источником получения ароматических соединений является каменноугольная смола - продукт сухой перегонки каменного угля. В результате ее обработки, состоящей из различных операций физического и химического характера, добываются разнообразные ароматические соединения, составляющие основу производства красителей, фармацевтических препаратов, взрывчатых, душистых и многих других веществ. Важнейшими ароматическими соединениями каменноугольной смолы являются бензол, толуол, ксилол, фенол, крезол, нафталин, фенантрен и антрацен, промышленная разработка которых в связи с планомерными научными исследованиями вызвала совершенно исключительный рост химической промышленности в конце прошлого и в начале нынешнего столетия.

Реакции электрофильного замещения характерны для ароматических , карбоциклических и гетероциклических систем . В результате делокализации p-электронов в молекуле бензола (и других ароматических систем) p-электронная плотность распределена равномерно по обе стороны цикла. Подобное экранирование p-электронами атомов углерода цикла защищает их от атаки нуклеофильными реагентами и, наоборот, облегчает возможность атаки электрофильными реагентами.

Но в отличие от реакций алкенов с электрофильными реагентами, взаимодействие ароматических соединений с ними не приводит к образованию продуктов присоединения, так как в этом случае нарушалась бы ароматичность соединения и уменьшалась его устойчивость. Сохранение ароматичности возможно в случае, если электрофильная частица заместит катион водорода .

Механизм реакций электрофильного замещения похож на механизм реакций электрофильного присоединения, так как имеются общие закономерности протекания реакций.

Общая схема механизма реакций электрофильного замещения S Е:

На первом этапе реакции образуется p-комплекс с электрофильной частицей (быстрая стадия), который затем превращается в s-комплекс (медленная стадия) за счет образования s- связи одним из атомов углерода с электрофильной частицей. Для образования s- связи с электрофильной частицей из сопряжения «вырывается» пара электронов, а образующийся продукт приобретает положительный заряд. В s-комплексе ароматичность нарушена, так как один из атомов углерода находится в sp 3 -гибридизации, а на пяти других атомах углерода делокализованы четыре электрона и положительный заряд.

Для регенерации термодинамически выгодной ароматической системы происходит гетеролитический разрыв связи C sp 3 -Н. В результате отщепляется ион Н + , а пара электронов связи идет на восстановление системы сопряжения, при этом у атома углерода, отщепившего протон, изменяется гибридизация атомных орбиталей с sp 3 на sp 2 . Механизм реакций нитрования, сульфирования, галогенирования, алкилирования, ацилирования ароматических соединений включает еще дополнительную стадию, не указанную в общей схеме - стадию генерирования электрофильной частицы.

Уравнение реакции нитрования бензола имеет вид:

В реакциях нитрования генерирование электрофильной частицы происходит в результате взаимодействия азотной и серной кислот, что приводит к образованию катиона нитрония NO 2 + , который далее реагирует с ароматическим соединением:

В молекуле бензола все атомы углерода равноценны, замещение происходит у одного из них. Если в молекуле присутствуют заместители, то реакционная способность и направление электрофильной атаки определяется природой этого заместителя. По влиянию на реакционную способность и на направление атаки все заместители делятся на две группы.


Ориентанты I рода . Эти заместители облегчают электрофильное замещение по сравнению с бензолом и направляют входящую группу в орто- и пара-положения. К ним относятся электронодонорные заместители, увеличивающие электронную плотность в бензольном ядре. В результате ее перераспределения в положения 2,4,6 (орто- и пара-положения) возникают частичные отрицательные заряды, что облегчает присоединение электрофильной частицы в эти положения с образованием s-комплекса.

Ориентанты II рода . Эти заместители затрудняют реакции электрофильного замещения по сравнению с бензолом и направляют входящую группу в одно из мета-положений. К ним относятся электроноакцепторные заместители, уменьшающие электронную плотность в бензольном кольце. В результате ее перераспределения в положениях 3,5 (мета-положения) возникают частичные отрицательные заряды и присоединение электрофильной частицы с образованием s-комплекса идет в жестких условиях.

Атомы галогенов направляют электрофильную частицу в орто- или пара- положения (за счет положительного мезомерного эффекта), но при этом затрудняют протекание реакции, так как являются электроноакцепторными заместителями (-I>+M). Реакции галогенпроизводных бензола с электрофильными реагентами идут в жестких условиях.

В реакциях сульфирования роль электрофильной частицы выполняет молекула SO 3 , образующаяся в результате реакции: 2H 2 SO 4 « SO 3 +H 3 O + + HSO 4 - . Атомы серы в этой молекуле характеризуются сильным дефицитом электронной плотности и наличием частичного положительного заряда и, следовательно, именно атом S должен, как электрофил, связываться с атомом углерода бензольного кольца толуола.

Метильная группа в толуоле является ориентантом первого рода, и как электронодонорный заместитель облегчает реакцию замещения и направляет входящую группу в орто- и пара-положения. На практике образуются продукты замещения и в мета-положении, но их количество существенно меньше количеств продуктов замещения в орто- пара-положения.

Галогенирование бензола и многих ароматических соединений действием самого галогена протекает только в присутствии катализаторов, таких как ZnCl 2 , AlCl 3, FeBr 3 и т.д. Катализаторами обычно являются кислоты Льюиса . Между атомом металла и атомом галогена образуется связь по донорно-акцепторному механизму, что вызывает поляризацию молекулы галогена, усиливая ее электрофильный характер. Полученный аддукт может подвергаться диссоциации с образованием комплексного аниона и катиона галогена, выступающего далее в качестве электрофильной частицы:

В качестве галогенирующих средств могут применяться также водные растворы НО-Hal в присутствии сильных кислот. Образование электрофильной частицы в этом случае можно объяснить следующими реакциями:

Механизм дальнейшего взаимодействия катионов Br + или Cl + ничем не отличается от механизма нитрования катионами NO 2 + . Рассмотрим механизм реакции на примере бромирования анилина (ограничимся образованием монозамещенных продуктов). Как известно, анилин обесцечивает бромную воду, образуя в итоге 2,4,6-триброманилин, выделяющийся в виде белого осадка:

Образовавшаяся электрофильная частица атакует p-электроны бензольного кольца, образуя p-комплекс. Из возникшего p-комплекса образуются два основных s -комплекса, в которых связь углерод-бром возникает в орто- и пара-положениях цикла. На следующем этапе происходит отщепление протона, что приводит к образованию монозамещенных производных анилина. В избытке реагента эти процессы повторяются, приводя к образованию дибром- и трибромпроизводных анилина.

Алкилирование (замещение атома водорода на алкильный радикал) ароматических соединений осуществляется при их взаимодействии с галогеналканами (реакция Фриделя-Крафтса). Взаимодействие первичных алкилгалогенидов, например СН 3 Cl, с ароматическими соединениями в присутствии кислот Льюиса мало чем отличается по своему механизму от реакций галогенирования. Рассмотрим механизм на примере метилирования нитробензола. Нитрогруппа, как ориентант второго рода, дезактивирует бензольное кольцо в реакциях электрофильного замещения и направляет входящую группу в одно из мета-положений.

В общем виде уравнение реакции имеет вид:

Генерирование электрофильной частицы происходит в результате взаимодействия галогеналкана с кислотой Льюиса:

Образующийся метильный катион атакует p-электроны бензольного кольца, что приводит к образованию p-комплекса. Образовавшийся p-комплекс далее медленно превращается в s -комплекс (карбкатион), в котором связь между метильным катионом и атомом углерода цикла возникает главным образом в положениях 3 или 5 (т.е. в мета-положениях, в которых из-за электронных эффектов нитрогруппы возникают частичные отрицательные заряды). Завершающей стадией является отщепление протона от s -комплекса и восстановление сопряженной системы.

В качестве алкилирующих агентов при алкилировании бензола вместо алкилгалогенидов могут использоваться также алкены или спирты. Для образования электрофильной частицы - карбкатиона - необходимо наличие кислоты. Механизм реакции в этом случае будет отличаться лишь на стадии генерирования электрофильной частицы. Рассмотрим это на примере алкилирования бензола пропиленом и пропанолом-2:

Генерирование электрофильной частицы:

В случае использования в качестве реагента пропилена образование карбкатиона происходит в результате присоединения протона (по правилу Марковникова). При использовании в качестве реагента пропанола-2 образование карбкатиона происходит в результате отщепления молекулы воды от протонированного спирта.

Образовавшийся изопропильный катион атакует p-электроны бензольного кольца, что приводит к возникновению p-комплекса, который далее превращается в s- комплекс с нарушенной ароматичностью. Последующее отщепление протона ведет к регенерации ароматической системы:

Реакции ацилирования (замещения катиона Н + на ацильную группу R-C + =O) происходят аналогичным образом. Рассмотрим на примере реакции ацилирования метокисибензола, уравнение которой можно представить следующим образом:

Как и в предыдущих случаях, электрофильная частица генерируется в результате взаимодействия хлорангидрида уксусной кислоты с кислотой Льюиса:

Образующийся катион ацилия сначала образует p-комплекс, из которого возникают главным образом два s -комплекса, в которых формирование s- связи между циклом и электрофильной частицей происходит преимущественно в орто- и пара-положениях, так как в этих положениях возникают частичные отрицательные заряды из-за электронного влияния метоксигруппы.

Ароматические гетероциклы также вступают в реакции электрофильного замещения. При этом пятичленные гетероциклы - пиррол, фуран и тиофен - легче вступают в реакции S E , так как являются p-избыточными системами. Однако при проведении реакций с этими соединениями необходимо учитывать их ацидофобность. Нестабильность этих соединений в кислой среде объясняется нарушением ароматичности в результате присоединения протона.

При проведении реакций электрофильная частица замещает протон в a-положении; если оба a-положения заняты, то замещение протекает по b-положению. В остальном механизм реакций электрофильного замещения аналогичен рассмотренным выше случаям. В качестве примера приведем бромирование пиррола:

Механизм реакции с участием ароматических гетероциклов включает все рассмотренные выше стадии - генерирование электрофильной частицы, образование p-комплекса, превращение его в s- комплекс (карбкатион), отщепление протона, приводящее к образованию ароматического продукта.

При проведении реакций электрофильного замещения с участием p-дефицитных ароматических систем, таких как пиридин и пиримидин, нужно учитывать их изначально более низкую реакционную способность (дефицит p-электронной плотности затрудняет образование p-комплекса и его превращение в s- комплекс), которая еще сильнее снижается при проведении реакций в кислой среде. Хотя в кислой среде ароматичность этих соединений не нарушается, протонирование атома азота приводит к усилению дефицита p-электронной плотности в цикле.

Пиридин способен алкилироваться, сульфироваться, нитроваться, ацилироваться и галогенироваться. Однако в большинстве случаев с электрофильной частицей образует связь более нуклеофильный атом азота, а не атомы углерода пиридина.

В случае протекания реакции в пиридиновом цикле замещение идет по одному из b-положений, в которых возникают частичные отрицательные заряды.