Четыре движущих силы Вселенной (7 фото). Основные силы вселенной 4 основные силы в физике

Одним из величайших достижений физики за последние два тысячелетия стало выделение и определение четырех видов взаимодействия, которые правят вселенной. Все они могут быть описаны на языке полей, которым мы обязаны Фарадею. К несчастью, однако, ни один из четырех видов не обладает в полной мере свойствами силовых полей, описанных в боль­шинстве фантастических произведений. Перечислим эти виды взаимодействия. Пайлекс цена .

1. Гравитация. Безмолвная сила, не позволяющая нашим ногам оторваться от опоры. Она не дает рассы­паться Земле и звездам, помогает сохранить целост­ность Солнечной системы и Галактики. Без гравитации вращение планеты вышвырнуло бы нас с Земли в космос со скоростью 1000 миль в час. Проблема в том, что свойства гравитации в точности противо­положны свойствам фантастических силовых полей. Гравитация - сила притяжения, а не отталкивания; она чрезвычайно слаба - относительно, разумеется; она работает на громадных, астрономических расстоя­ниях. Другими словами, являет собой почти полную противоположность плоскому, тонкому, непроницае­мому барьеру, который можно встретить едва ли не в любом фантастическом романе или фильме. К приме­ру, перышко к полу притягивает целая планета - Зем­ля, но мы легко можем преодолеть притяжение Земли и поднять перышко одним пальцем. Воздействие одного нашего пальца способно преодолеть силу притяжения целой планеты, которая весит больше шести триллио­нов килограммов.

2. Электромагнетизм (ЭМ). Сила, освещающая наши города. Лазеры, радио, телевидение, современная электроника, компьютеры, Интернет, электричество, магнетизм - все это следствия проявления электро­магнитного взаимодействия. Возможно, это самая по­лезная сила, которую удалось обуздать человечеству на протяжении всей его истории. В отличие от гравитации она может работать и на притяжение, и на отталкива­ние. Однако и она не годится на роль силового поля по нескольким причинам. Во-первых, ее можно легко нейтрализовать. К примеру, пластик или любой другой непроводящий материал без труда проникнет в мощ­ное электрическое или магнитное поле. Кусок пласти­ка, брошенный в магнитное поле, свободно пролетит его насквозь. Во-вторых, электромагнетизм действует на больших расстояниях, его непросто сосредоточить в плоскости. Законы ЭМ-взаимодействия описываются уравнениями Джеймса Клерка Максвелла, и похоже, силовые поля не являются решением этих уравнений.

3 и 4. Сильные и слабые ядерные взаимодействия. Слабое взаимодействие - это сила радиоактивно­го распада, та, что разогревает радиоактивное ядро Земли. Эта сила стоит за извержениями вулканов, зем­летрясениями и дрейфом континентальных плит. Силь­ное взаимодействие не дает рассыпаться ядрам атомов; оно обеспечивает энергией солнце и звезды и отвечает за освещение Вселенной. Проблема в том, что ядерное взаимодействие работает только на очень маленьких расстояниях, в основном в пределах атомного ядра. Оно так прочно связано со свойствами самого ядра, что управлять им чрезвычайно трудно. В настоящее время нам известно только два способа влиять на это взаимо­действие: мы можем разбить субатомную частицу на части в ускорителе или взорвать атомную бомбу.

Хотя защитные поля в научной фантастике и не подчиня­ются известным законам физики, все же существуют лазейки, которые в будущем, вероятно, сделают создание силового поля возможным. Во-первых, существует, возможно, пятый вид фун­даментального взаимодействия, который никому до сих пор не удалось увидеть в лаборатории. Может оказаться, к примеру, что это взаимодействие работает только на расстояниях от не­скольких дюймов до фута - а не на астрономических расстоя­ниях. (Правда, первые попытки обнаружить пятый вид взаимо­действия дали отрицательные результаты.)

Во-вторых, нам, возможно, удастся заставить плазму ими­тировать некоторые свойства силового поля. Плазма - это «четвертое состояние вещества». Три первые, привычные нам состояния вещества, - твердое, жидкое и газообразное; тем не менее самой распространенной формой вещества во вселенной является плазма: газ, состоящий из ионизированных атомов. Атомы в плазме не связаны между собой и лишены электро­нов, а потому обладают электрическим зарядом. Ими можно без труда управлять при помощи электрического и магнитного полей.

Видимое вещество вселенной существует по большей ча­сти в форме различного рода плазмы; из нее образованы солн­це, звезды и межзвездный газ. В обычной жизни мы почти не сталкиваемся с плазмой, потому что на Земле это явление редкое; тем не менее плазму можно увидеть. Для этого доста­точно взглянуть на молнию, солнце или экран плазменного телевизора.

ВОПРОСЫ К ЭКЗАМЕНУ по ФИЗИКЕ ТСП 2 курс

1. Основные понятия динамики: масса, сила, инерция, инертность, законы Ньютона.

Масса - количественная мера инертности тела. Единица измерения массы в СИ называется килограмм (кг).

Сила - векторная физическая величина, являющаяся мерой интенсивности воздействия на данное тело других тел, а также полей.

Инерция - это свойство материального тела оказывать сопротивление изменению скорости его движения (как по величине, так и по направлению).

Инертность - свойство тела в большей или меньшей степени препятствовать изменению своей скорости относительно инерциальной системы отсчёта при воздействии на него внешних сил.

Законы Ньютона :

1. Материальная точка находится в покое или движется равномерно и прямолинейно, если на неё не действуют силы или действующие силы на точку уравновешены.

2.Ускорение, с которым движется тело, прямо пропорционально действующей на него силе, обратно пропорционально массе тела и по направлению совпадает с направлением действия силы.

3.Силы, с которыми материальные тела действуют друг на друга, равны по величине, противоположны по направлению и направлены по прямой, проходящей через эти тела.

2. Силы в природе .

гравитационных, электромагнитных, сильных (ядерных) и слабых.
Гравитационные силы , или силы всемирного тяготения, действуют между всеми телами - все тела притягиваются друг к другу. Но это притяжение существенно обычно лишь тогда, когда хотя бы одно из взаимодействующих тел так же велико, как Земля или Луна. Иначе эти силы столь малы, что ими можно пренебречь.
Электромагнитные силы действуют между частицами, имеющими электрические заряды. Сфера их действия особенно обширна и разнообразна. В атомах, молекулах, твердых, жидких и газообразных телах, живых организмах именно электромагнитные силы являются главными. Велика их роль в атомах.
Область действия ядерных сил очень ограничена. Они заметны только внутри атомных ядер (т. е. на расстояниях порядка 10 -13 см). Уже на расстояниях между частицами порядка 10 -11 см (в тысячу раз меньших размеров атома - 10 -8 см) они не проявляются совсем.
Слабые взаимодействия проявляются на еще меньших расстояниях, порядка 10 -15 см. Они вызывают взаимные превращения элементарных частиц, определяют радиоактивный распад ядер, реакции термоядерного синтеза.
Ядерные силы - самые мощные в природе. Если интенсивность ядерных сил принять за единицу, то интенсивность электромагнитных сил составит 10 -2 , гравитационных - 10 -40 , слабых взаимодействий - 10 -16 .
Сильные (ядерные) и слабые взаимодействия проявляются на таких малых расстояниях, когда законы механики Ньютона, а с ними вместе и понятие механической силы теряют смысл.
В механике мы будем рассматривать только гравитационные и электромагнитные взаимодействия.
Силы в механике. В механике обычно имеют дело с тремя видами сил - силами тяготения, силами упругости и силами трения.
Силы упругости и трения имеют электромагнитную природу.



3. Сила всемирного тяготения, вес, невесомость, свободное падение.

Сила тяготения - сила взаимного притяжения, действующая между всеми материальными телами.
В 1682 году Ньютон открыл закон всемирного тяготения: все тела притягиваются друг к другу, сила всемирного тяготения прямо пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними:

Вес - сила воздействия тела на опору (или подвес или другой вид крепления), препятствующую падению, возникающая в поле сил тяжести HYPERLINK " http:// ru . wikipedia . org / wiki /% D 0%92% D 0% B 5% D 1%81" HYPERLINK " http:// ru . wikipedia . org / wiki /% D 0%92% D 0% B 5% D 1%81" .

Невесо́мость - состояние, при котором сила взаимодействия тела с опорой (вес тела ), возникающая в связи с гравитационным притяжением, действием других массовых сил, в частности силы инерции, возникающей при ускоренном движении тела, отсутствует.

Формула:
Р=0, где Р - вес, то есть сила, с которой тело действует на опору или подвес.

Свобо́дное падéние - это равноускоренное движение под действием силы тяжести .

g - ускорение свободного падения, 9.81 (м/с²),

4. Движение тела под действием нескольких сил.

Обычно на тело действуют одновременно несколько сил. Наряду с силами тяжести и упругости почти всегда действует сила трения. Учитывать силу трения особенно необходимо в случаях, когда рассма-тривается движение транспорта.

Хорошо известно, что для избежания аварий следует сохранять определенную дистанцию между автомобилями; в дождливую погоду или в гололедицу она должна быть больше, чем в сухую погоду. Возникают вопросы: какой должна быть эта дистанция и как она зависит от скорости движения автомобиля? Чтобы на них ответить, рассмотрим задачу.

Взаимодействие – основная причина движения материи, поэтому взаимодействие присуще всем материальным объектам независимо от их природного происхождения и системной организации. Особенности различных взаимодействий определяют условия существования и специфику свойств материальных объектов. Всего известно четыре вида взаимодействия: гравитационное, электромагнитное, сильное и слабое.

Гравитационное взаимодействие первым из известных фундаментальных взаимодействий стало предметом исследования ученых. Оно проявляется во взаимном притяжении любых материальных объектов, имеющих массу, передается посредством гравитационного поля и определяется законом всемирного тяготения, который был сформулирован И. Ньютоном

Закон всемирного тяготения описывает падение материальных тел в поле Земли, движение планет Солнечной системы, звезд и т. п. По мере увеличения массы вещества гравитационные взаимодействия возрастают. Гравитационное взаимодействие – наиболее слабое из всех известных современной науке взаимодействий. Тем не менее гравитационные взаимодействия определяют строение всей Вселенной: образование всех космических систем; существование планет, звезд и галактик. Важная роль гравитационного взаимодействия определяется его универсальностью: все тела, частицы и поля участвуют в нем.

Переносчиками гравитационного взаимодействия являются гравитоны – кванты гравитационного поля.

Электромагнитное взаимодействие также является универсальным и существует между любыми телами в микро-, макро– и мегамире. Электромагнитное взаимодействие обусловлено электрическими зарядами и передается с помощью электрического и магнитного полей. Электрическое поле возникает при наличии электрических зарядов, а магнитное – при движении электрических зарядов. Электромагнитное взаимодействие описывается: законом Кулона, законом Ампера и др. и в обобщенном виде – электромагнитной теорией Максвелла, связывающей электрическое и магнитное поля. Благодаря электромагнитному взаимодействию возникают атомы, молекулы и происходят химические реакции. Химические реакции представляют собой проявление электромагнитных взаимодействий и являются результатами перераспределения связей между атомами в молекулах, а также количества и состава атомов в молекулах разных веществ. Различные агрегатные состояния вещества, силы упругости, трения и т. д. определяются электромагнитным взаимодействием. Переносчиками электромагнитного взаимодействия являются фотоны – кванты электромагнитного поля с нулевой массой покоя.

Внутри атомного ядра проявляются сильные и слабые взаимодействия. Сильное взаимодействие обеспечивает связь нуклонов в ядре. Данное взаимодействие определяется ядерными силами, обладающими зарядовой независимостью, короткодействием, насыщением и другими свойствами. Сильное взаимодействие удерживает нуклоны (протоны и нейтроны) в ядре и кварки внутри нуклонов и отвечает за стабильность атомных ядер. С помощью сильного взаимодействия ученые объяснили, почему протоны ядра атома не разлетаются под действием электромагнитных сил отталкивания. Сильное взаимодействие передается глюонами – частицами, «склеивающими» кварки, которые входят в состав протонов, нейтронов и других частиц.

Слабое взаимодействие также действует только в микромире. В этом взаимодействии участвуют все элементарные частицы, кроме фотона. Оно обусловливает большинство распадов элементарных частиц, поэтому его открытие произошло вслед за открытием радиоактивности. Первая теория слабого взаимодействия была создана в 1934 г. Э. Ферми и развита в 1950-е гг. М. Гелл-Маном, Р. Фейнманом и другими учеными. Переносчиками слабого взаимодействия принято считать частицы с массой в 100 раз больше массы протонов – промежуточные векторные бозоны.

Характеристики фундаментальных взаимодействий представлены в табл. 2.1.

Таблица 2.1

Характеристики фундаментальных взаимодействий

Из таблицы видно, что гравитационное взаимодействие гораздо слабее других взаимодействий. Радиус его действия неограничен. Оно не играет существенной роли в микропроцессах и в то же время является основным для объектов с большими массами. Электромагнитное взаимодействие сильнее гравитационного, хотя радиус его действия также неограничен. Сильное и слабое взаимодействия имеют очень ограниченный радиус действия.

Одна из важнейших задач современного естествознания – создание единой теории фундаментальных взаимодействий, объединяющей различные виды взаимодействия. Создание подобной теории означало бы также построение единой теории элементарных частиц.

Образование протогалактических облаков менее около 1 млрд лет после Большого Взрыва
Иллюстрация: Адольф Шаллер, Галерея Хаббл (NASA)

Мы хорошо знаем силу гравитации, которая держит нас на земле и затрудняет полёт на Луну. И электромагнетизм, благодаря которому мы не распадаемся на отдельные атомы и можем включать в розетку ноутбуки. Физик koptchick рассказывает о ещё двух силах, делающих Вселенную именно такой, какая она есть.

Со школьной скамьи все мы хорошо знаем закон Всемирного тяготения и закон Кулона. Первый объясняет нам, как взаимодействуют (притягиваются) друг с другом массивные объекты типа звёзд и планет. Другой же показывает (вспомним опыт с эбонитовой палочкой), какие силы притяжения и отталкивания возникают между электрически заряженными предметами.

Но исчерпывается ли этим всё множество сил и взаимодействий, которые определяют облик наблюдаемой нами Вселенной?

Современная физика говорит о том, что во Вселенной существуют четыре типа основных (фундаментальных) взаимодействий между частицами. О двух из них я уже сказал выше и с ними, казалось бы, всё просто, т. к. проявления их постоянно окружают нас в повседневной жизни: это гравитационное и электромагнитное взаимодействие.


Так, за счёт действия первого мы крепко стоим на земле и не улетаем в открытый космос. Второе же, например, обеспечивает притяжение электрона к протону в атомах, из которых все мы состоим и, в конечном счёте, притяжение атомов друг к другу (т. е. оно ответственно за образование молекул, биологических тканей и т. д.). Так что именно из-за сил электромагнитного взаимодействия, например, оказывается, что снести голову надоевшему соседу не так уж просто, и с этой целью нам приходится прибегать к помощи топора разнообразных подручных средств.

Но есть ещё, так называемое, сильное взаимодействие. За что ответственно оно? Не удивлял ли вас в школе тот факт, что, несмотря на утверждение закона Кулона о том, что два положительных заряда должны отталкиваться друг от друга (лишь противоположные притягиваются), ядра многих атомов преспокойно существуют себе. А ведь состоят они, как вы помните, из протонов и нейтронов. Нейтроны — они на то и нейтроны, что нейтральны и электрического заряда не имеют, а вот протоны заряжены положительно. И что же, спрашивается, за силы, могут удержать вместе (на расстоянии в одну триллионную долю микрона — что в тысячу раз меньше самого атома!) несколько протонов, которые, по закону Кулона, должны со страшной энергией отталкиваться друг от друга?

Сильное взаимодействие — обеспечивает притяжение между частицами в ядре; электростатическое — отталкивание
Вот эту поистине титаническую задачу по преодолению Кулоновых сил берёт на себя сильное взаимодействие. Так что, ни много, ни мало, за счёт него протоны (как, впрочем, и нейтроны) в ядре всё же притягиваются друг к другу. Кстати, сами протоны и нейтроны также состоят из ещё более «элементарных» частиц — кварков. Так вот кварки также взаимодействуют и притягиваются друг к другу «сильно». Но, к счастью, в отличие от того же гравитационного взаимодействия, которое работает и на космических расстояниях во многие миллиарды километров, сильное взаимодействие является, как говорят, короткодействующим. Это означает, что поле «сильного притяжения», окружающее один протон работает лишь на крохотных масштабах, сопоставимых, собственно, с размерами ядра.

Поэтому, например, протон, сидящий в ядре одного из атомов, не может, наплевав на Кулоновское отталкивание, взять, да «сильно» притянуть к себе протон из соседнего атома. В противном случае, вся протонная и нейтронная материя во Вселенной смогла бы «притянуться» к общему центру масс и образовать одно огромное «суперядро». Нечто похожее, впрочем, происходит в толще нейтронных звёзд, в одну из которых, как можно ожидать, однажды (лет эдак миллиардов через пять) сожмётся наше Солнце.


Итак, четвёртое и последнее из фундаментальных взаимодействий в природе — это, так называемое, слабое взаимодействие. Не даром оно так названо: мало того, что работает оно даже на ещё более коротких, чем сильное взаимодействие, расстояниях, так ещё и мощи оно весьма малой. Так что, в отличие своего сильного «собрата», Кулоновского отталкивания, оно никак не перетянет.

Ярким примером, демонстрирующим слабость слабых взаимодействий, являются частицы под называнием нейтрино (можно перевести как «маленький нейтрон», «нейтрончик»). Эти частицы, по природе своей, в сильных взаимодействиях не участвующие, электрического заряда не имеющие (оттого не восприимчивые и к электромагнитным взаимодействиям), массой обладающие ничтожной даже по меркам микромира и, следовательно, практически нечувствительные к гравитации, по факту, способны лишь к слабым взаимодействиям.


Чо? Нейтрино сквозь меня проходят?!
При этом, во Вселенной нейтрино нарождается в количествах поистине колоссальных, и огромный поток этих частиц постоянно пронизывает толщу Земли. Например, в объёме спичечного коробка, в среднем, в каждый момент времени находится штук 20 нейтрино. Таким образом, можно представить себе, огромную бочку с водой-детектор, и то неимоверное количество нейтрино, которое в каждый момент времени пролетает через неё. Так вот учёным, работающим на этом детекторе обычно приходится месяцами ждать такого счастливого случая, чтоб хотя бы один нейтрино «почувствовал» их бочку и своими слабыми силами провзаимодействовал в ней.

Однако ж, даже несмотря на слабость свою, это взаимодействие играет очень немаловажную роль во Вселенной и в жизни человека. Так, именно оно оказывается ответственным за один из видов радиоактивности — именно, бета-распад, являющийся вторым (после гамма-радиоактивности) по степени опасности своего воздействия на живые организмы. И, что не менее важно, без слабого взаимодействия невозможно было бы протекание термоядерных реакций, протекающих в недрах многих звёзд и ответственных за выделение энергии светила.


Такая вот четвёрка всадников Апокалипсиса фундаментальных взаимодействий правит во Вселенной бал: сильное, электромагнитное, слабое и гравитационное.

Си́ла - векторная физическая величина, являющаяся мерой интенсивности воздействия на данное тело других тел, а также полей. Приложенная к массивному телу сила является причиной изменения его скорости или возникновения в нём деформаций.

В современной науке выделяют 4 типа взаимодействий. Два из них, которые рассматриваются в механике, называются гравитационное и электромагнитное . Им соответствуют силы, которые нельзя свести к более простым, и поэтому они называются фундаментальными . Еще два: сильные и слабые являются ядерными. Сила притяжения и g. Деформация – это изменение размеров или формы тела под воздействием других тел. Как известно из курса школьной физики, все тела состоят из электрических зарядов. При деформации тел изменяются расстояния между зарядами, а это, в свою очередь, приводит к нарушению равновесия между силами притяжения и отталкивания между зарядами. При растяжении тела преобладают силы притяжения между зарядами и тело «сопротивляется» растяжению, аналогично, при сжатии преобладают силы отталкивания. Закон Гука. Сила реакции опоры и сила натяжения подвеса. Весом тела называют силу, с которой тело действует на опору или подвес. При взаимодействии тела с опорой или подвесом деформируется и само тело, что приводит к появлению силы упругости, действующей на опору или подвес. Силы веса и реакции опоры связаны между собой согласно третьему закону Ньютона. Аналогичное равенство имеется и для тела на подвесе. Т=Р. Сила трения.

В рамках классической механики гравитационное взаимодействие описывается законом всемирного тяготения Ньютона, который гласит, что сила гравитационного притяжения между двумя материальными точками массы и , разделёнными расстоянием , пропорциональна обеим массам и обратно пропорциональна квадрату расстояния - то есть:

Электромагнитное взаимодействие существует между частицами, обладающими электрическим зарядом. С современной точки зрения электромагнитное взаимодействие между заряженными частицами осуществляется не прямо, а только посредством электромагнитного поля.

В сильном взаимодействии участвуют кварки и глюоны и составленные из них частицы, называемые адронами (барионы и мезоны). Оно действует в масштабах порядка размера атомного ядра и менее, отвечая за связь между кварками в адронах и за притяжение между нуклонами (разновидность барионов - протоны и нейтроны) в ядрах.

Слабое взаимодействие , или слабое ядерное взаимодействие - одно из четырёх фундаментальных взаимодействий в природе. Оно ответственно, в частности, за бета-распадядра. Это взаимодействие называется слабым, поскольку два других взаимодействия, значимые для ядерной физики (сильное и электромагнитное), характеризуются значительно большей интенсивностью. Однако оно значительно сильнее четвёртого из фундаментальных взаимодействий, гравитационного. Слабое взаимодействие является короткодействующим - оно проявляется на расстояниях, значительно меньших размера атомного ядра.